Licha black (LI) pig has the specific characteristics of larger body length and appropriate fat deposition among Chinese indigenous pigs. Body length is one of the external traits that affect production performance, and fat deposition influences meat quality. However, the genetic characteristics of LI pigs have not yet been systematically uncovered. Here, the genomic information from 891 individuals of LI pigs, commercial pigs, and other Chinese indigenous pigs was used to analyze the breed characteristics of the LI pig with runs of homozygosity, haplotype, and FST selection signatures. The results showed the growth traits-related genes (i.e., NR6A1 and PAPPA2) and the fatness traits-related gene (i.e., PIK3C2B) were the promising candidate genes that closely related to the characteristics of LI pigs. In addition, the protein–protein interaction network revealed the potential interactions between the promising candidate genes and the FASN gene. The RNA expression data from FarmGTEx indicated that the RNA expression levels of NR6A1, PAPPA2, PIK3C2B, and FASN were highly correlated in the ileum. This study provides valuable molecular insights into the mechanisms that affect pig body length and fat deposition, which can be used in the further breeding process to improve meat quality and commercial profitability.
Background The mechanisms behind obesity are complex and multi-faceted, involving the interplay of both host genomics and gut microbiome. In recent years, research has largely focused on these factors separately, but rarely from the viewpoint of holo-omics, which considers the host and microbiome as an integrated entity. To address this gap in knowledge, the present study aimed to investigate the holo-omics basis of obesity in Jinhua pigs, a Chinese indigenous breed known for its high degree of fat deposition and superior meat quality. Methods Six pigs with extreme obesity phenotype were selected from a larger cohort of 18 Jinhua pigs, and the contents of the jejunum, cecum, and colon regions were collected after slaughter at 240 days of age. The data obtained was processed, denoised, and annotated using QIIME2, with expression differences being analyzed using edgeR software. Results The results showed significant differences in jejunal microbial diversity and composition between the two groups, with gut transcriptomics also indicating that differentially expressed genes in the jejunum were enriched in lipid metabolism pathways. These findings provide further evidence of the influence of the gut microbiome and host gene expression on fat deposition in Jinhua pigs. Conclusions This study provides valuable insights into the mechanisms of fat deposition in Jinhua pigs from the viewpoint of holo-omics. The integration of host transcriptomics and microbiome data helps shed light on the complex interactions between the host and gut microbiome, and highlights the importance of considering both factors in our understanding of obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.