In high-speed free-space optical communication systems, the received laser beam must be coupled into a single-mode fiber at the input of the receiver module. However, propagation through atmospheric turbulence degrades the spatial coherence of a laser beam and poses challenges for fiber coupling. In this paper, we propose a novel method, called as adaptive stochastic parallel gradient descent (ASPGD), to achieve efficient fiber coupling. To be specific, we formulate the fiber coupling problem as a model-free optimization problem and solve it using ASPGD in parallel. To avoid converging to the extremum points and accelerate its convergence speed, we integrate the momentum and the adaptive gain coefficient estimation to the original stochastic parallel gradient descent (SPGD) method. Simulation and experimental results demonstrate that the proposed method reduces 50% of iterations, while keeping the stability by comparing it with the original SPGD method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.