Abstract. We propose a discontinuous Galerkin method for convection-subdiffusion equations with a fractional operator of order α(1 < α < 2) defined through the fractional Laplacian. The fractional operator of order α is expressed as a composite of first order derivatives and fractional integrals of order 2 − α, and the fractional convection-diffusion problem is expressed as a system of low order differential/integral equations and a local discontinuous Galerkin method scheme is derived for the equations. We prove stability and optimal order of convergence O(h k+1 ) for subdiffusion, and an order of convergence of O(h k+ 1 2 ) is established for the general fractional convection-diffusion problem. The analysis is confirmed by numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.