The development of higher education has led to an increasing demand for campus buildings. To promote the sustainable development of campus buildings, this paper combines social willingness-to-pay (WTP) with the analytic hierarchy process (AHP) based on the characteristics of Chinese campus buildings to establish a life cycle assessment–life cycle cost (LCA–LCC) integrated model. Based on this model, this paper analyses the teaching building at a university in North China. The results show that the environmental impacts and economic costs are largest in the operation phase of the life cycle, mainly because of the use of electric energy. The environmental impacts and economic costs during the construction phase mainly come from the building material production process (BMPP); in this process, steel is the main source. Throughout the life cycle, abiotic depletion-fossil fuel potential (ADP fossil) and global warming potential (GWP) are the most prominent indexes. Further analysis shows that these two indexes should be the emphases of similar building assessments in the near future. Finally, this study offers suggestions for the proposed buildings and existing buildings based on the prominent problems found in the case study, with the aim to provide reference for the design, construction, and operation management of similar buildings.
The ecological environment in high-cold and high-altitude area is fragile and sensitive, which raise higher claim for municipal solid waste (MSW) management. In the high-cold and high-altitude area, there are problems, such as the mismatch between the actual amount of MSW generated and the scale of transportation and treatment facilities, and the inefficiency of MSW management. In terms of MSW forecasting methods, it is also difficult to forecast due to the lack of data. This study is the first to propose a system dynamics-based method for predicting the amount of MSW generated in high-cold and high-altitude area, and apply it to Lhasa. The research results show that the total amount of MSW generated in Lhasa is small, but the growth rate is fast. Through dynamic simulation, it is found that the synergistic consideration of gross domestic product (GDP) growth rate, urban construction policy and tourism development policy can significantly reduce the growth trend (14% emission reduction in 2030). In addition, strengthening supervision and restraint, publicity and education in high-cold and high-altitude area can produce better waste sorting effects, minimise the pressure on treatment facilities, and improve resource utilisation. Finally, the policy implications are suggested, for example, in the process of MSW management, the impact of economy, urbanisation, tourism and so on, should be taken into account and comprehensively adjusted. It is anticipated that this model and policy implications can be applied to other high-cold and high-altitude cities to provide data support and policy reference for the whole-process management of MSW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.