Dietary luteolin activated browning and thermogenesis through an AMPK/PGC1α pathway-mediated mechanism.
Abnormal activation of the nuclear factor‐kappa B (NF‐κB) signaling pathway is closely implicated in triple‐negative breast cancer growth, metastasis, and tumor immune escape. In this study, the anti‐cancer effects of icariin, a natural flavonol glycoside, toward breast cancer cells and the underlying mechanisms were investigated. This investigation showed that icariin selectively inhibited proliferation and triggered apoptosis in breast cancer cells in a concentration‐ and time‐dependent manner, but exhibited little cytotoxicity in normal breast cells. Moreover, icariin induced cell apoptosis via a mitochondria‐mediated pathway, as indicated by the upregulated ratio of Bax/Bcl‐2 and reactive oxygen species induction. Importantly, icariin impaired the activation of the NF‐κB/EMT pathway, as evidenced by upregulation of SIRT6, resulting in inhibition of migration and invasion of breast cancer cells. Additionally, oss‐128167, an inhibitor of SIRT6, dramatically attenuated anti‐migration and anti‐invasion effects of icariin. Transcriptomic analysis verified that impairment of NF‐κB led to the selective function of icariin in breast cancer cells. Notably, icariin exhibited a significant tumor growth inhibition and anti‐pulmonary metastasis effect in a tumor mouse model of MDA‐MB‐231 and 4T1 cells by regulating the tumor immunosuppressive microenvironment. Together, these results showed that icariin could effectively trigger apoptosis and inhibit the migration of breast cancer cells via the SIRT6/NF‐κB signaling pathway, suggesting that icariin might serve as a potential candidate drug for the treatment of breast cancer.
Breast cancer which is the most common type of diagnosed cancer among women worldwide possesses metastatic potential, multi-drug resistance, and high mortality. The NF-κB signaling pathway has been revealed to be abnormally activated in breast cancer cells and closely associated with high metastasis and poor prognosis. In the present study, it was reported that chlorogenic acid (CGA), a potent NF-κB inhibitor derived from coffee, exerted antitumor activity in breast cancer. MTT and colony formation assays were conducted and it was revealed that CGA inhibited viability and proliferation in breast cancer cells. Additionally, CGA significantly induced apoptosis and suppressed migration and invasion in breast cancer cells. Notably, immunofluorescence analysis confirmed that CGA could efficiently suppress nuclear transcription of NF-κB p65. In addition, results of western blotting demonstrated that CGA markedly impaired the NF-κB and EMT signaling pathways. The antitumor effect of CGA was evaluated in a subcutaneous tumor mouse model of 4T1 cells, and the results revealed that CGA markedly retarded tumor growth and prolonged the survival rate of tumor-bearing mice. Notably, CGA inhibited pulmonary metastasis of 4T1 cells by enhancing the proportion of CD4 + and CD8 + T cells in spleens of mice, which indicated an improvement of antitumor immunity. In conclusion, the present present study demonstrated that CGA improved antitumor immunity, exerting antitumor and anti-metastatic effects by impairing the NF-κB/EMT signaling pathway, suggesting that CGA may serve as a potential candidate for therapy of breast cancer.
The human gut microbiota is a complex cluster composed of 100 trillion microorganisms, which holds a symbiotic relationship with the host under normal circumstances. Intestinal flora can facilitate the treatment of human metabolic dysfunctions and interact with the intestinal tract, which could influence intestinal tolerance, immunity, and sensitivity to inflammation. In recent years, significant interests have evolved on the association of intestinal microbiota and kidney diseases within the academic circle. Abnormal changes in intestinal microbiota, known as dysbiosis, can affect the integrity of the intestinal barrier, resulting in the bacterial translocation, production, and accumulation of dysbiotic gut-derived metabolites, such as urea, indoxyl sulfate (IS), and p-cresyl sulfate (PCS). These processes lead to the abnormal activation of immune cells; overproduction of antibodies, immune complexes, and inflammatory factors; and inflammatory cell infiltration that can directly or indirectly cause damage to the renal parenchyma. The aim of this review is to summarize the role of intestinal flora in the development and progression of several renal diseases, such as lupus nephritis, chronic kidney disease, diabetic nephropathy, and renal ischemia-reperfusion injury. Further research on these mechanisms should provide insights into the therapeutic potential of regulating intestinal flora and intervening related molecular targets for the abovementioned nephropathy.
Worldwide, infertility affects 8-12% of couples of reproductive age and has become a common problem. There are many ways to treat infertility, including medication, intrauterine insemination, and in vitro fertilization. In recent years, stem-cell therapy has raised new hope in the field of reproductive disability management. Stem cells are self-renewing, self-replicating undifferentiated cells that are capable of producing specialized cells under appropriate conditions. They exist throughout a human’s embryo, fetal, and adult stages and can proliferate into different cells. While many issues remain to be addressed concerning stem cells, stem cells have undeniably opened up new ways to treat infertility. In this review, we describe past, present, and future strategies for the use of stem cells in reproductive medicine
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.