In this paper, a multichannel refractive index sensor based on a subwavelength metal–insulator–metal (MIM) waveguide coupled with tangent-ring resonators is proposed. When two tangent-ring resonators were placed above the MIM waveguide, Fano resonance with asymmetrical line shape appeared in the transmission spectrum due to the interference between the light–dark resonant modes. The sensitivity and figure of merit were as high as 880 nm/RIU and 964, respectively. Through adding more tangent-ring resonators, multiple Fano resonances with ultrasharp peaks/dips were achieved in the wavelength range of 800–2000 nm. Besides, negative group delays were also observed in the Fano resonant dips. Two-dimensional finite-difference time-domain (FDTD) method was used to simulate and analyze the performances of the proposed structures. These kinds of multiring structures can find important applications in the on-chip optical sensing and optical communication areas.
In this paper, an end-coupled hexagonal resonator inserted with dual parallel metallic blocks is proposed based on subwavelength metal-insulator-metal waveguides. When the blocks are vertically inserted into the resonator, more transmission channels (three peaks) with symmetrical spectral shapes than that (one peak) of the perfect hexagonal resonator are achieved in the same wavelength range. The transmission peaks all have high transmittances; thus, the structure can be performed as an on-chip optical filter. When the blocks are horizontally distributed in the resonator, the antinode and node of the magnetic field for the expected mode will arise inside and outside the blocks, leading to the mode interactions. Subsequently, Fano resonance with an asymmetrical peak is achieved in the structure. High index sensitivity and high figure of merit, which are significant factors for optical sensors, are investigated by using the finite-difference time-domain method. The proposed structure can highly support the development of integrated photonics and find wide applications in the on-chip optical filtering and sensing areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.