Abstract. Submersible aerial vehicle is capable of both flying in the air and submerging in the water. Advanced Research Project Agency (DARPA) outlined a challenging set of requirements for a submersible aircraft and solicited innovative research proposals on submersible aircraft since 2008. In this paper, a conceptual configuration design scheme of submersible unmanned aerial vehicle is proposed. This submersible UAV lands on the surface of water, then adjusts its own density to entry water. On the contrary, it emerges from water by adjusting its own density and then takes off from the surface of water. Wing of the UAV is whirling wing. It is set along aircraft's fuselage while submerging for lift reduction. We analysis aerodynamic and hydrodynamic performance of this UAV by CFD method, especially compare the hydrodynamic performance of the whirling wing configuration and normal configuration. It turns out that whirling wing is beneficial for submerging. This result proves that the configuration design scheme proposed in this paper is feasible and suitable for a submersible unmanned aerial vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.