Long-term near-surface soil moisture (SM) data can be obtained on a regional scale through microwave remote sensing. Therefore, to quantitatively analyze the accuracy of multisource remote sensing–based observation products, improve the retrieval algorithm, and effectively use in terminal environments, a standardized comprehensive evaluation is imperative. The SM data obtained by the China Meteorological Administration and Ministry of Water Resources were used as reference data to verify the performance of six passive microwave remote sensing–based SM products from the SMOS, SMAP, GCOM-W, FY-3B, and FY-3C satellites in Hunan province, China. These data were also used to analyze the effects of topographical, land cover, and meteorological factors on SM retrieval accuracy. Results show that SMAP shows the best overall performance in Hunan province; furthermore, it exhibits stable accuracy and is not easily affected by environmental factors. The FY series of satellite products shows the worst performance, and some grid remote sensing data are negatively correlated with the ground measurement data. AMSR2 possesses the largest amount of data and the largest deviation, and only this product exhibits significant differences with the fluctuation trend of the measured SM and precipitation. Passive microwave detection technology presents the best performance in the central part of Hunan province and the largest bias in the Dongting Lake area. SMOS-L3 and SMOS-IC, two products of the same satellite, show the lowest bias but present differences in the SM fluctuation range, orbital accuracy, as well as dry or wet bias. Furthermore, FY-3B and FY-3C, two satellites belonging to the same series, exhibit excellent consistency in performance. The evaluation results and accuracy variation between products as well as other factors identified in the study provide a baseline reference for improving the retrieval algorithm. This study provides a quantitative basis for developing improved applications of passive microwave SM products.
Microwave remote sensing can provide long-term near-surface soil moisture data on regional and global scales. Conducting standardized authenticity tests is critical to the effective use of observed data products in models, data assimilation, and various terminal scenarios. Global Land Data Assimilation System (GLDAS) soil moisture data were used as a reference for comparative analysis, and triple collocation analysis was used to validate data from four mainstream passive microwave remote sensing soil moisture products: Soil Moisture and Ocean Salinity (SMOS), Soil Moisture Active and Passive (SMAP), Global Change Observation Mission–Water using the Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument, and Fengyun-3C (FY-3C). The effects of topography, land cover, and meteorological factors on the accuracy of soil moisture observation data were determined. The results show that SMAP had the best overall performance and AMSR2 the worst. Passive microwave detection technology can accurately capture soil moisture data in areas at high altitude with uniform terrain, particularly if the underlying surface is soil, and in areas with low average temperatures and little precipitation, such as the Qinghai–Tibet Plateau. FY-3C performed in the middle of the group and was relatively optimal in northeast China but showed poor data integrity. Variation in accuracy between products, together with other factors identified in the study, provides a baseline reference for the improvement of the retrieval algorithm, and the research results provide a quantitative basis for developing better use of passive microwave soil moisture products.
Land surface temperature (LST) is an important parameter in determining surface energy balance and a fundamental variable detected by the advanced geostationary radiation imager (AGRI), the main payload of FY-4A. FY-4A is the first of a new generation of Chinese geostationary satellites, and the detection product of the satellite has not been extensively validated. Therefore, it is important to conduct a comprehensive assessment of this product. In this study, the performance of the FY-4A LST product in the Hunan Province was authenticity tested with in situ measurements, triple collocation analyzed with reanalysis products, and impact analyzed with environmental factors. The results confirm that FY-4A captures LST well (R = 0.893, Rho = 0.915), but there is a general underestimation (Bias = −0.6295 °C) and relatively high random error (RMSE = 8.588 °C, ubRMSE = 5.842 °C). In terms of accuracy, FY-4A LST is more accurate for central-eastern, northern, and south-central Hunan Province and less accurate for western and southern mountainous areas and Dongting Lake. FY-4A LST is not as accurate as Himawari-8 LST; its accuracy also varies seasonally and between day and night. The accuracy of FY-4A LST decreases as elevation, in situ measured LST, surface heterogeneity, topographic relief, slope, or NDVI increase and as soil moisture decreases. FY-4A LST is also more accurate when the land cover is cultivated land or artificial surfaces or when the landform is a platform for other land covers and landforms. The conclusions drawn from the comprehensive analysis of the large quantity of data are generalizable and provide a quantitative baseline for assessing the detection capability of the FY-4A satellite, a reference for determining improvement in the retrieval algorithm, and a foundation for the development and application of future domestic satellite products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.