Ni-rich layered transition-metal oxides with high specific capacity and energy density are regarded as one of the most promising cathode materials for next generation lithium-ion batteries. However, the notorious surface impurities and high air sensitivity of Ni-rich layered oxides remain great challenges for its large-scale application. In this respect, surface impurities are mainly derived from excessive Li addition to reduce the Li/Ni mixing degree and to compensate for the Li volatilization during sintering. Owing to the high sensitivity to moisture and CO2 in ambient air, the Ni-rich layered oxides are prone to form residual lithium compounds (e.g. LiOH and Li2CO3) on the surface, subsequently engendering the detrimental subsurface phase transformation. Consequently, Ni-rich layered oxides often have inferior storage and processing performance. More seriously, the residual lithium compounds increase the cell polarization, as well as aggravate battery swelling during long-term cycling. This review focuses on the origin and evolution of residual lithium compounds. Moreover, the negative effects of residual lithium compounds on storage performance, processing performance and electrochemical performance are discussed in detail. Finally, the feasible solutions and future prospects on how to reduce or even eliminate residual lithium compounds are proposed.
The ever-growing demand for portable devices and electric vehicles are drawing widespread attention to advanced energy storage systems. Over the past few decades, lithium-sulfur batteries (LSBs) have vast potential to act as the next-generation of rechargeable power source due to their high theoretical specific energy, cost-effectiveness, and environmental benignity. However, insufficient sulfur utilization, inferior cyclability, and rate capability originating from the intrinsic insulating features of the sulfur and notorious polysulfide shuttle are major obstacles to fulfilling the industrialization of LSBs. In this respect, the introduction of a functional barrier layer coating on a separator has been verified as an effective strategy to overcome the aforementioned intractable problems. In this review, we focus on summarizing the current progress of the modified polyolefin-based separators (known as functional separators), including functional separator facing cathodes and functional separator facing anodes. According to the working mechanism, functional separator facing cathodes are divided into physical adsorption separators, chemical adsorption separators, catalytic conversion separators, and multifunctional separators. Meanwhile, functional separator facing anodes are classified into physical barrier separators, induced lithium growth separators, regulated lithium nucleation separators, and hybrid mechanism separators. Finally, the future perspective coupled with the practical utilization of functional separators in LSBs is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.