Enhancing nitrogen use efficiency (NUE) in crop plants is an important breeding target to reduce excessive use of chemical fertilizers, with substantial benefits to farmers and the environment. In Arabidopsis (Arabidopsis thaliana), allocation of more NO 3 2 to shoots was associated with higher NUE; however, the commonality of this process across plant species have not been sufficiently studied. Two Brassica napus genotypes were identified with high and low NUE. We found that activities of V-ATPase and V-PPase, the two tonoplast proton-pumps, were significantly lower in roots of the high-NUE genotype (Xiangyou15) ] S:R ratios were significantly higher in Xiangyou15. BnNRT1.5 expression was higher in roots of Xiangyou15 compared with 814, while BnNRT1.8 expression was lower. In both B. napus treated with proton pump inhibitors or Arabidopsis mutants impaired in proton pump activity, vacuolar sequestration capacity (VSC) of NO 3 2 in roots substantially decreased. Expression of NRT1.5 was up-regulated, but NRT1.8 was down-regulated, driving greater NO 3 2 long-distance transport from roots to shoots. NUE in Arabidopsis mutants impaired in proton pumps was also significantly higher than in the wild type col-0. Taken together, these data suggest that decrease in VSC of NO 3 2 in roots will enhance transport to shoot and essentially contribute to higher NUE by promoting NO 3 2 allocation to aerial parts, likely through coordinated regulation of NRT1.5 and NRT1.8.
MicroRNAs (miRNAs) are small, non-coding RNAs found throughout the eukaryotes that control the expression of a number of genes involved in commitment and differentiation of hematopoietic stem cells and tumorigenesis. Widespread dysregulation of miRNAs have been found in hematological malignancies, including human acute myeloid leukemia (AML). A comprehensive understanding of the role of miRNAs within the complex regulatory networks that are disrupted in malignant AML cells is a prerequisite for the development of therapeutic strategies employing miRNA modulators. Herein, we review the roles of emerging miRNAs and the miRNAs regulatory networks in AML pathogenesis, prognosis, and miRNA-directed therapies.
BackgroundGut microbiota plays a critical role in many important physiological processes and is linked with various pulmonary infectious diseases. The relationship between pulmonary tuberculosis (PTB) and gut microbiota has been poorly studied. The present study aimed to characterize gut microbiota in pediatric patients with PTB.MethodsA case-controlled study was executed for the characterization of gut microbiota in pediatric PTB patients. Fecal samples were collected from the PTB patients and healthy controls upon admission. In addition, a one-month follow-up assessment was performed to investigate alterations in the gut microbiota post anti-tuberculosis treatment. 16SrDNA sequencing analysis of fecal DNA was completed on the Illumina MiSeq platform.ResultsCompared with healthy controls, the gut microbiota of pediatric patients with PTB was characterized by decreased microbial diversity. PTB patients further presented an up-regulation of the pro-inflammatory bacteria Prevotella, the opportunistic pathogen Enterococcus, as well as a reduction of beneficial bacteria including Ruminococcaceae, Bifidobacteriaceae and prausnitzii. One-month after anti-tuberculosis therapy, the richness of gut microbiota in PTB patients was distinctly depleted.ConclusionsThe gut microbiota of pediatric patients with PTB was significantly distinct from healthy controls. Additionally, the richness of gut microbiota in PTB patients decreased after one-month anti-tuberculosis treatment. It is hypothesized that the homeostasis of gut microbiota in PTB patients may affect the pathogenies of PTB by de-regulation of the hosts’ immune status through the gut-lung axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.