The spreading of antimicrobial resistance (AMR) in crops and food products represents a global concern.In this study, we conducted a survey of resistomes in maize rhizosphere from Michigan, California, the Netherland, and South Africa, and investigated potential associations with host bacteria and soil management practices in the crop eld. For comparison, relative abundance of antibiotic resistance genes (ARGs) is normalized to the size of individual metagenomes. Michigan maize rhizosphere metagenomes showed the highest abundance and diversity of ARGs, with the detection of blaTEM-116, blaACT-4/-6, and FosA2, exhibiting high similarity (≥ 99.0%) to those in animal and human pathogens. This was probably related to the decade-long application of manure/composted manure from antibiotictreated animals. Moreover, RbpA, vanRO, mtrA, and dfrB were prevalently found across most studied regions, implying their intrinsic origins. Further analysis revealed that RbpA, vanRO, and mtrA are mainly harbored by native Actinobacteria with low mobility, while a group of dfrB genes are adjacent to the recombination binding sites (attC), which together constitute mobile gene cassettes, promoting the transmission from soil bacteria to human pathogens. These results suggest that maize rhizosphere resistomes can be distinctive and affected by many factors, particularly those relevant to agricultural practices.
The spreading of antimicrobial resistance (AMR) in crops and food products represents a global concern. In this study, we conducted a survey of resistomes in maize rhizosphere from Michigan, California, the Netherland, and South Africa, and investigated potential associations with host bacteria and soil management practices in the crop field. For comparison, relative abundance of antibiotic resistance genes (ARGs) is normalized to the size of individual metagenomes. Michigan maize rhizosphere metagenomes showed the highest abundance and diversity of ARGs, with the detection of blaTEM-116, blaACT-4/-6, and FosA2, exhibiting high similarity (≥ 99.0%) to those in animal and human pathogens. This was probably related to the decade-long application of manure/composted manure from antibiotic-treated animals. Moreover, RbpA, vanRO, mtrA, and dfrB were prevalently found across most studied regions, implying their intrinsic origins. Further analysis revealed that RbpA, vanRO, and mtrA are mainly harbored by native Actinobacteria with low mobility, while a group of dfrB genes are adjacent to the recombination binding sites (attC), which together constitute mobile gene cassettes, promoting the transmission from soil bacteria to human pathogens. These results suggest that maize rhizosphere resistomes can be distinctive and affected by many factors, particularly those relevant to agricultural practices.
The spreading of antimicrobial resistance (AMR) in crops and food products represents a global concern. In this study, we conducted a survey of resistomes in maize rhizosphere from Michigan, California, the Netherland, and South Africa, and investigated potential associations with host bacteria and soil management practices in the crop field. For comparison, relative abundance of antibiotic resistance genes (ARGs) is normalized to the size of individual metagenomes. Michigan maize rhizosphere metagenomes showed the highest abundance and diversity of ARGs, with the detection of blaTEM-116, blaACT-4/-6, and FosA2, exhibiting high similarity (≥ 99.0%) to those in animal and human pathogens. This was probably related to the decade-long application of manure/composted manure from antibiotic-treated animals. Moreover, RbpA, vanRO, mtrA, and dfrB were prevalently found across most studied regions, implying their intrinsic origins. Further analysis revealed that RbpA, vanRO, and mtrA are mainly harbored by native Actinobacteria with low mobility, while a group of dfrB genes are adjacent to the recombination binding sites (attC), which together constitute mobile gene cassettes, promoting the transmission from soil bacteria to human pathogens. These results suggest that maize rhizosphere resistomes can be distinctive and affected by many factors, particularly those relevant to agricultural practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.