Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper, we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications. INDEX TERMS Edge computing, federated learning, internet of things, personalization.
Federated Learning (FL) has been proposed as an appealing approach to handle data privacy issue of mobile devices compared to conventional machine learning at the remote cloud with raw user data uploading. By leveraging edge servers as intermediaries to perform partial model aggregation in proximity and relieve core network transmission overhead, it enables great potentials in low-latency and energy-efficient FL. Hence we introduce a novel Hierarchical Federated Edge Learning (HFEL) framework in which model aggregation is partially migrated to edge servers from the cloud. We further formulate a joint computation and communication resource allocation and edge association problem for device users under HFEL framework to achieve global cost minimization. To solve the problem, we propose an efficient resource scheduling algorithm in the HFEL framework. It can be decomposed into two subproblems: resource allocation given a scheduled set of devices for each edge server and edge association of device users across all the edge servers. With the optimal policy of the convex resource allocation subproblem for a set of devices under a single edge server, an efficient edge association strategy can be achieved through iterative global cost reduction adjustment process, which is shown to converge to a stable system point. Extensive performance evaluations demonstrate that our HFEL framework outperforms the proposed benchmarks in global cost saving and achieves better training performance compared to conventional federated learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.