A polydimethylsiloxane armed with epoxy, alkoxy and acrylate groups was synthesized from silanol terminated-PDMS and epoxy and acrylate groups functionalized silane coupling agents, and utilized as the adhesion promoter (AP) to prepare addition-cured liquid silicone rubber that exhibited self-adhesion ability (SA-LSR) with biocompatible thermoplastic polyurethanes (TPU) sheets. The structural characteristics of AP were characterized by Fourier transform infrared (FTIR) spectroscopy, which demonstrated the strong adhesion to polyester-based TPU sheets due to a sufficient amount of acrylate groups, epoxy groups and silanol groups obtained by the hydrolysis of alkoxy groups. In detail, the peel-off strength of SA-LSR and TPU joints reached up to 7.63 N mm−1 after the optimization of adhesion promoter including type and content, and curing condition including time and temperature. The cohesive failure was achieved during the sample breakage process. Moreover, the SA-LSR showed a good storage stability under proper storage conditions. This design strategy provided the feasibility to combine the advantages of addition-cured liquid silicone rubber and plastics with low melting points, promoting the potential application range of those silicone-based materials.
The abnormal increase in low-density lipoprotein (LDL) in human blood is a main independent risk factor for the pathogenesis of atherosclerosis, whereas a reduced LDL level effectively lowers morbidity. It is important to develop LDL adsorption materials with high efficiency and selectivity, as well as to simplify their fabrication processes. In this paper, polysulfone (PSF), sulfonated polysulfone (SPSF), and sulfonated polysulfone/dextran (SPSF/GLU) membranes were successfully fabricated for LDL adsorption using a solution casting technique. Attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy measurements confirmed the success of the preparation. The water contact angle decreased from 89.7 ± 3.4° (PSF) to 76.4 ± 3.2° (SPSF) and to 71.2 ± 1.9° (SPSF/GLU), respectively. BSA adsorption testing showed that the SPSF/GLU with surface enrichment of sulfonate groups and glycosyl groups possessed higher resistance to protein solution. The adsorption and desorption behaviors of the studied samples in single-protein or binary-protein solutions were systematically investigated by enzyme-linked immunosorbent assay (ELISA), The results showed that SPSF/GLU, which had excellent resistance to protein adsorption, possessed a similar adsorption capacity to that of PSF. SPSF membrane exhibited excellent selective affinity for LDL in single and binary protein solutions, suggesting potential applications in LDL removal.
The strong adhesion of thermally conductive silicone encapsulants on highly integrated electronic devices can avoid external damages and lead to an improved long-term reliability, which is critical for their commercial application. However, due to their low surface energy and chemical reactivity, the self-adhesive ability of silicone encapsulants to substrates need to be explored further. Here, we developed epoxy and alkoxy groups-bifunctionalized tetramethylcyclotetrasiloxane (D4H-MSEP) and boron-modified polydimethylsiloxane (PDMS-B), which were synthesized and utilized as synergistic adhesion promoters to provide two-component addition-cured liquid silicone rubber (LSR) with a good self-adhesion ability for applications in electronic packaging at moderate temperatures. The chemical structures of D4H-MSEP and PDMS-B were characterized by Fourier transform infrared spectroscopy. The mass percentage of PDMS-B to D4H-MSEP, the adhesion promoters content and the curing temperature on the adhesion strength of LSR towards substrates were systematically investigated. In detail, the LSR with 2.0 wt% D4H-MSEP and 0.6 wt% PDMS-B exhibited a lap-shear strength of 1.12 MPa towards Al plates when curing at 80 °C, and the cohesive failure was also observed. The LSR presented a thermal conductivity of 1.59 W m−1 K−1 and good fluidity, which provided a sufficient heat dissipation ability and fluidity for potting applications with 85.7 wt% loading of spherical α-Al2O3. Importantly, 85 °C and 85% relative humidity durability testing demonstrated LSR with a good encapsulation capacity in long-term processes. This strategy endows LSR with a good self-adhesive ability at moderate temperatures, making it a promising material requiring long-term reliability in the encapsulation of temperature-sensitive electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.