Aging is an inevitable physiological challenge occurring in organisms over time, and is also the most important risk factor of neurodegenerative diseases. In this study, we observed cellular and molecular changes of different age mice and LPS-induced Parkinson disease (PD) model. The results showed that behavioral performance and dopaminergic (DA) neurons were declined, accompanied by increased expression of pro-inflammatory factors (TLR2, p-NF-kB-p65, IL-1β and TNF-α), as well as pro-oxidative stress factor gp91phox in aged mice compared with young mice. Aging exaggerated inflammatory M1 microglia, and destroyed the balance between oxidation and anti-oxidation. The intranasal LPS instillation induced PD model in both young and aged mice. The poor behavioral performance and the loss of DA neurons as well as TLR2, p-NF-kB-p65, IL-1β, TNF-α, iNOS and gp91phox were further aggravated in LPS-aged mice. Interestingly, the expression of Nrf2 and HO-1 was up-regulated by LPS only in young LPS-PD mice, but not in aged mice. The results indicate that the synergy of aging process and LPS exposure may prominently aggravate the DA neurons loss caused by more serious neuroinflammation and oxidative stress in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.