Increasing evidence has emerged a tight link among the gut microbiota, host age and health status. This osculating interplay impedes the definition of gut microbiome features associated with host health from that in developmental stages. Consequently, gut microbiota-based prediction of health status is promising yet not well established. Here we firstly tracked shrimp gut microbiota (N = 118) over an entire cycle of culture; shrimp either stayed healthy or progressively transitioned into severe disease. The results showed that the gut microbiota were significantly distinct over shrimp developmental stages and disease progression. Null model and phylogenetic-based mean nearest taxon distance (MNTD) analyses indicated that deterministic processes that governed gut community became less important as the shrimp aged and disease progressed. The predicted gut microbiota age (using the profiles of age-discriminatory bacterial species as independent variables) fitted well (r = 0.996; P < 0.001) with the age of healthy subjects, while this defined trend was disrupted by disease. Microbiota-for-age Z-scores (MAZ, here defined as immaturity) were relative stable among healthy shrimp, but sharply decreased when disease emerged. By distinguishing between age- and disease- discriminatory taxa, we developed a model, bacterial indicators of shrimp health status, to diagnose disease from healthy subjects with 91.5% accuracy. Notably, the relative abundances of the bacterial indicators were indicative for shrimp disease severity. These findings, in aggregate, add our understanding on the gut community assembly patterns over shrimp developmental stages and disease progression. In addition, shrimp disease initiation and severity can be accurately diagnosed using gut microbiota immaturity and bacterial indicators.
Rice variety is one of the key factors regulating methane (CH 4 ) production and emission from the paddy fields. However, the relationships between rice varieties and populations of microorganisms involved in CH 4 dynamics are poorly understood. Here we investigated CH 4 dynamics and the composition and abundance of CH 4 -producing archaea and CH 4 -oxidizing bacteria in a Chinese rice field soil planted with three types of rice. Hybrid rice produced 50-60% more of shoot biomass than Indica and Japonica cultivars. However, the emission rate of CH 4 was similar to Japonica and lower than Indica. Furthermore, the dissolved CH 4 concentration in the rhizosphere of hybrid rice was markedly lower than Indica and Japonica cultivars. The rhizosphere soil of hybrid rice showed a similar CH 4 production potential but a higher CH 4 oxidation potential compared with the conventional varieties. Terminal restriction fragment length polymorphism analysis of the archaeal 16S rRNA genes showed that the hydrogenotrophic methanogens dominated in the rhizosphere whereas acetoclastic methanogens mainly inhabited the bulk soil. The abundance of total archaea as determined by quantitative (real-time) PCR increased in the later stage of rice growth. However, rice variety did not significantly influence the structure and abundance of methanogenic archaea. The analysis of pmoA gene fragments (encoding the a-subunit of particulate methane monooxygenase) revealed that rice variety also did not influence the structure of methanotrophic proteobacteria, though variable effects of soil layer and sampling time were observed. However, the total copy number of pmoA genes in the rhizosphere of hybrid rice was approximately one order of magnitude greater than the two conventional cultivars. The results suggest that hybrid rice stimulates the growth of methanotrophs in the rice rhizosphere, and hence enhances CH 4 oxidation which attenuates CH 4 emissions from the paddy soil. Hybrid rice is becoming more and more popular in Asian countries. The present study demonstrated that planting of hybrid rice will not enhance CH 4 emissions albeit a higher grain production than the conventional varieties.
Intestinal bacterial communities play a pivotal role in promoting host health; therefore, the disruption of intestinal bacterial homeostasis could result in disease. However, the effect of the occurrences of disease on intestinal bacterial community assembly remains unclear. To address this gap, we compared the multifaceted ecological differences in maintaining intestinal bacterial community assembly between healthy and diseased shrimps. The neutral model analysis shows that the relative importance of neutral processes decreases when disease occurs. This pattern is further corroborated by the ecosphere null model, revealing that the bacterial community assembly of diseased samples is dominated by stochastic processes. In addition, the occurrence of shrimp disease reduces the complexity and cooperative activities of species-to-species interactions. The keystone taxa affiliated with Alphaproteobacteria and Actinobacteria in healthy shrimp gut shift to Gammaproteobacteria species in diseased shrimp. Changes in intestinal bacterial communities significantly alter biological functions in shrimp. Within a given metabolic pathway, the pattern of enrichment or decrease between healthy and deceased shrimp is correlated with its functional effects. We propose that stressed shrimp are more prone to invasion by alien strains (evidenced by more stochastic assembly and higher migration rate in diseased shrimp), which, in turn, disrupts the cooperative activity among resident species. These findings greatly aid our understanding of the underlying mechanisms that govern shrimp intestinal community assembly between health statuses.
Methanotrophs in the rhizosphere play an important role in global climate change since they attenuate methane emission from rice field ecosystems into the atmosphere. Most of the CH 4 is emitted via transport through the plant gas vascular system. We used this transport for stable isotope probing (SIP) of the methanotrophs in the rhizosphere under field conditions and pulselabelled rice plants in a Chinese rice field with CH 4 (99% 13 C) for 7 days. The rate of 13 CH 4 loss rate during 13 C application was comparable to the CH 4 oxidation rate measured by the difluoromethane inhibition technique. The methanotrophic communities on the roots and in the rhizospheric soil were analyzed by terminal-restriction fragment length polymorphism (T-RFLP), cloning and sequencing of the particulate methane monooxygenase (pmoA) gene. Populations of type I methanotrophs were larger than those of type II. Both methane oxidation rates and composition of methanotrophic communities suggested that there was little difference between urea-fertilized and unfertilized fields. SIP of phospholipid fatty acids (PLFA-SIP) and rRNA (RNA-SIP) were used to analyze the metabolically active methanotrophic community in rhizospheric soil. PLFA of type I compared with type II methanotrophs was labelled more strongly with 13 C, reaching a maximum of 6.8 atom-%. T-RFLP analysis and cloning/sequencing of 16S rRNA genes showed that methanotrophs, especially of type I, were slightly enriched in the 'heavy' fractions. Our results indicate that CH 4 oxidation in the rice rhizosphere under in situ conditions is mainly due to type I methanotrophs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.