The CED-4 homo-oligomer or apoptosome is required for initiation of programmed cell death in Caenorhabditis elegans by facilitating autocatalytic activation of the CED-3 caspase zymogen. How the CED-4 apoptosome assembles and activates CED-3 remains enigmatic. Here we report the crystal structure of the complete CED-4 apoptosome and show that it consists of eight CED-4 molecules, organized as a tetramer of an asymmetric dimer via a previously unreported interface among AAA(+) ATPases. These eight CED-4 molecules form a funnel-shaped structure. The mature CED-3 protease is monomeric in solution and forms an active holoenzyme with the CED-4 apoptosome, within which the protease activity of CED-3 is markedly stimulated. Unexpectedly, the octameric CED-4 apoptosome appears to bind only two, not eight, molecules of mature CED-3. The structure of the CED-4 apoptosome reveals shared principles for the NB-ARC family of AAA(+) ATPases and suggests a mechanism for the activation of CED-3.
The voltammetric separation of dopamine and ascorbic acid was studied with cyclic voltammetry at two kinds of carbon nanotube-modified electrodes (coated and intercalated). The anodic peak difference reached 270 mV under the present conditions. The separation mechanism and effect factors were carefully studied. Using various types of surfactants as coating dispersants of carbon nanotubes, it was demonstrated that the charge nature of the surfactants had a strong effect on the electrochemical behavior of dopamine and ascorbic acid. When the oxidation solution of carbon nanotubes was changed from the most commonly used mixed concentrated nitric acid and sulfuric acid (1 + 3 v/v) to dilute nitric acid and to hydrochloric acid, the anodic peak separation value of dopamine and ascorbic acid increased significantly, and it was shown that carboxylic acid groups attached to the carbon nanotubes were an adverse factor for the discrimination of DA from AA. These results indicated that the resolution of DA and AA was mainly attributable to the stereo porous interfacial layer formed from aggregated pores and inner cavities of the carbon nanotubes. The modified electrodes exhibited an attractive ability to measure DA and AA simultaneously and showed good stability and reproducibility.
Significance Upstream cell death stimuli culminate in the activation of an initiator caspase, marking the onset of apoptosis. Activation of the initiator caspase, caspase-9, is mediated by the heptameric Apaf-1 apoptosome. How Apaf-1 apoptosome facilitates the autocatalytic activation of caspase-9 has remained controversial and largely enigmatic. Two contrasting but not mutually exclusive hypotheses, proximity-induced dimerization vs. induced conformation, emphasize different aspects of initiator caspase activation. This study provides compelling evidence to support the induced conformation model for caspase-9 activation. A previously unknown interface between Apaf-1 and caspase-9 was identified to play an essential role in caspase-9 activation, and formation of a multimeric complex between Apaf-1 caspase recruitment domain (CARD) and caspase-9 was shown to be indispensable for caspase-9 activation.
Vascular systems are responsible for various physiological and pathological processes related to all organs in vivo, and the survival of engineered tissues for enough nutrient supply in vitro. Thus, biomimetic vascularization is highly needed for constructing both a biomimetic organ model and a reliable engineered tissue. However, many challenges remain in constructing vascularized tissues, requiring the combination of suitable biomaterials and engineering techniques. In this review, the advantages of hydrogels on building engineered vascularized tissues are discussed and recent engineering techniques for building perfusable microchannels in hydrogels are summarized, including micromolding, 3D printing, and microfluidic spinning. Furthermore, the applications of these perfusable hydrogels in manufacturing organ‐on‐a‐chip devices and transplantable engineered tissues are highlighted. Finally, current challenges in recapitulating the complexity of native vascular systems are discussed and future development of vascularized tissues is prospected.
The manufacture of bionic materials to simulate the natural counterparts has attracted extensive attention. As one of the subcategories of biomimetic materials, the development of artificial enzyme is intensive pursuing. As a kind of artificial enzyme, nanozymes are dedicated to solve the limitations of natural enzymes. In recent years, attributed to the explosive development of nanotechnology, biotechnology, catalysis science, computational design and theory calculation, research on nanozymes has made great progress. To highlight these achievements and help researchers to understand the current investigation status of nanozyme, the state‐of‐the‐art development in nanozymes from fabrication materials to bioapplications are summarized. First different raw materials are summarized, including metal‐based, metal‐free, metal‐organic frameworks‐based, and some other novel matters, which are applied to fabricate nanozymes. The different types of enzymes‐like catalytic activities of nanozymes are briefly discussed. Subsequently, the wide applications of nanozymes such as anti‐oxidation, curing diseases, anti‐bacteria, biosensing, and bioimaging are discussed. Finally, the current challenges faced by nanozymes are outlined and the future directions for advancing nanozyme research are outlooked. The authors hope this review can inspire research in the fields of nanotechnology, chemistry, biology, materials science, and theoretical computing, and can contribute to the development of nanozymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.