Heat stroke is a life-threatening condition, featuring a high body temperature and malfunction of many organ systems. The relationship between heat shock and lysosomes is poorly understood, mainly because of the lack of a suitable research approach. Herein, by incorporating morpholine into a stable hemicyanine skeleton, we develop a new lysosome-targeting near-infrared ratiometric pH probe. In combination with fluorescence imaging, we show for the first time that the lysosomal pH value increases but never decreases during heat shock, which might result from lysosomal membrane permeabilization. We also demonstrate that this lysosomal pH rise is irreversible in living cells. Moreover, the probe is easy to synthesize, and shows superior overall analytical performance as compared to the existing commercial ones. This enhanced performance may enable it to be widely used in more lysosomal models of living cells and in further revealing the mechanisms underlying heat-related pathology.
Label and label-free methods to image carbon-based nanomaterials exist. However, label-based approaches are limited by the risk of tag detachment over time, and label-free spectroscopic methods have slow imaging speeds, weak photoluminescence signals and strong backgrounds. Here, we present a label-free mass spectrometry imaging method to detect carbon nanotubes, graphene oxide and carbon nanodots in mice. The large molecular weights of nanoparticles are difficult to detect using conventional mass spectrometers, but our method overcomes this problem by using the intrinsic carbon cluster fingerprint signal of the nanomaterials. We mapped and quantified the sub-organ distribution of the nanomaterials in mice. Our results showed that most carbon nanotubes and nanodots were found in the outer parenchyma of the kidney, and all three materials were seen in the red pulp of the spleen. The highest concentrations of nanotubes in the spleen were found within the marginal zone.
Current analytical methods, either point-of-care or centralized detection, are not able to meet recent demands of patient-friendly testing and increased reliability of results. Here, we describe a two-point separation on-demand diagnostic strategy based on a paper-based mass spectrometry immunoassay platform that adopts stable and cleavable ionic probes as mass reporter; these probes make possible sensitive, interruptible, storable, and restorable on-demand detection. In addition, a new touch paper spray method was developed for on-chip, sensitive, and cost-effective analyte detection. This concept is successfully demonstrated via (i) the detection of Plasmodium falciparum histidine-rich protein 2 antigen and (ii) multiplexed and simultaneous detection of cancer antigen 125 and carcinoembryonic antigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.