The sex-specific prevalence of adrenal diseases has been known for a long time. However, the reason for the high prevalence of these diseases in females is not completely understood. Mouse studies have shown that the adult adrenal gland is sexually dimorphic at different levels like transcriptome, histology, and cell renewal. Here we used RNA-seq to show that in prepubertal mice, male and female adrenal glands were not only sexually dimorphic but also responded differently to the same external stimulus. We previously reported that thyroid hormone receptor β1 (TRβ1) in the adrenal gland is mainly expressed in the inner cortex and the fate of this TRβ1-expressing cell population can be changed by thyroid hormone (T3) treatment. In the present study, we found that adrenal glands in prepubertal mice were sexually dimorphic at the level of the transcriptome. Under T3 treatment, prepubertal females had 1,162 genes differentially expressed between the saline and T3 groups, whereas in males of the same age, only 512 genes were T3-responsive. Immunostaining demonstrated that several top sexually dimorphic T3-responsive genes, including Cyp2f2 and Dhcr24, were specifically expressed in the adrenal inner cortex, precisely in an area partially overlapping with the X-zone. Under T3 treatment, a unique cortical layer that surrounds the adrenal X-zone expanded significantly, forming a distinct layer peculiar to females. Our findings identified novel marker genes for the inner adrenal cortex, indicating there are different sub-zones in the zona fasciculata. The results also highlight the sex-specific response to thyroid hormone in the mouse adrenal gland.
Immunostaining is widely used in biomedical research to show the cellular expression pattern of a given protein. Multiplex immunostaining allows labeling using multiple primary antibodies. To minimize antibody cross-reactivity, multiplex immunostaining using indirect staining requires unlabeled primary antibodies from different host species. However, the appropriate combination of different species antibodies is not always available. Here, we describe a method of using unlabeled primary antibodies from the same host species (e.g., in this case both antibodies are from rabbit) for multiplex immunofluorescence on formalin-fixed paraffin-embedded (FFPE) mouse adrenal sections. This method uses the same procedure and reagents used in the antigen retrieval step to strip the activity of the previously stained primary antibody complex. Slides were stained with the first primary antibody using a general immunostaining protocol followed by a binding step with a biotinylated secondary antibody. Then, an avidin-biotin-peroxidase signal development method was used with fluorophore-tyramide as the substrate. The immunoactivity of the first primary antibody complex was stripped through immersion in a microwaved boiling sodium citrate solution for 8 min. The insoluble fluorophore-tyramide deposition remained on the sample, which allowed the slide to be stained with other primary antibodies. Although this method eliminates most false positive signals, some background from antibody cross-reactivity may remain. If the samples are enriched with endogenous biotin, a peroxidase-conjugated secondary antibody may be used to replace the biotinylated secondary antibody to avoid the false positive from recovered endogenous biotin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.