(2012) Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells,
Esophageal squamous cell carcinoma (ESCC) is one of the prevalent and deadly cancers worldwide, especially in Eastern Asia. The prognosis of ESCC remains poor; thus, it is still necessary to further dissect the underlying mechanisms and explore therapeutic targets of ESCC. Recent studies show that lncRNAs involve in the initiation and progression of various cancers including ESCC. HOTTIP has been recently revealed as oncogenic regulator in different cancers, however, whether HOTTIP is involved in ESCC remains poorly understood. To investigate the role of HOTTIP in ESCC, we evaluated the HOTTIP expression levels in a series of ESCC tissues and a panel of ESCC cell line using qRT-PCR. Moreover, we investigated the effect of HOTTIP on cell proliferation, migration and invasion of ESCC cells. Here, we reported that HOTTIP was upregulated in ESCC. Further experiments revealed that HOTTIP knockdown significantly inhibited ESCC cells proliferation by causing G1 arrest. Furthermore, inhibitory effects of HOTTIP on cell migration and invasion were partly associated with EMT process. In conclusion, these data suggest that HOTTIP could be an oncogene for ESCC, and may be served as a candidate target for new therapies in human ESCC.
BackgroundPatients with diabetes are prone to develop cardiac hypertrophy and more susceptible to myocardial ischemia–reperfusion (I/R) injury, which are concomitant with hyperglycemia-induced oxidative stress and impaired endothelial nitric oxide (NO) synthase (eNOS)/NO signaling. Caveolae are critical in the transduction of eNOS/NO signaling in cardiovascular system. Caveolin (Cav)-3, the cardiomyocytes-specific caveolae structural protein, is decreased in the diabetic heart in which production of reactive oxygen species are increased. We hypothesized that treatment with antioxidant N-acetylcysteine (NAC) could enhance cardiac Cav-3 expression and attenuate caveolae dysfunction and the accompanying eNOS/NO signaling abnormalities in diabetes.MethodsControl or streptozotocin-induced diabetic rats were either untreated or treated with NAC (1.5 g/kg/day, NAC) by oral gavage for 4 weeks. Rats in subgroup were randomly assigned to receive 30 min of left anterior descending artery ligation followed by 2 h of reperfusion. Isolated rat cardiomyocytes or H9C2 cells were exposed to low glucose (LG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) for 36 h before being subjected to 4 h of hypoxia followed by 4 h of reoxygenation (H/R).ResultsNAC treatment ameliorated myocardial dysfunction and cardiac hypertrophy, and attenuated myocardial I/R injury and post-ischemic cardiac dysfunction in diabetic rats. NAC attenuated the reductions of NO, Cav-3 and phosphorylated eNOS and mitigated the augmentation of O2 −, nitrotyrosine and 15-F2t-isoprostane in diabetic myocardium. Immunofluorescence analysis demonstrated the colocalization of Cav-3 and eNOS in isolated cardiomyocytes. Immunoprecipitation analysis revealed that diabetic conditions decreased the association of Cav-3 and eNOS in isolated cardiomyocytes, which was enhanced by treatment with NAC. Disruption of caveolae by methyl-β-cyclodextrin or Cav-3 siRNA transfection reduced eNOS phosphorylation. NAC treatment attenuated the reductions of Cav-3 expression and eNOS phosphorylation in HG-treated cardiomyocytes or H9C2 cells. NAC treatment attenuated HG and H/R induced cell injury, which was abolished during concomitant treatment with Cav-3 siRNA or eNOS siRNA.ConclusionsHyperglycemia-induced inhibition of eNOS activity might be consequences of caveolae dysfunction and reduced Cav-3 expression. Antioxidant NAC attenuated myocardial dysfunction and myocardial I/R injury by improving Cav-3/eNOS signaling.
Patients with diabetes are vulnerable to myocardial ischemia reperfusion (IR) injury, which may also induce acute lung injury (ALI) due to overaccumulation of reactive oxygen species (ROS) and inflammation cytokine in circulation. Despite autophagy plays a significant role in diabetes and pulmonary IR injury, the role of autophagy in ALI secondary to myocardial IR in diabetes remains largely elusive. We aimed to investigate pulmonary autophagy status and its roles in oxidative stress and inflammation reaction in lung tissues from diabetic rats subjected to myocardial IR. Control or diabetic rats were either treated with or without autophagy inducer rapamycin (Rap) or autophagy inhibitor 3-methyladenine (3-MA) before myocardial IR, which was achieved by occluding the left anterior descending coronary artery for 30 min and followed by reperfusion for 120 min. Diabetic rats subjected to myocardial IR showed more serious ALI with higher lung injury score and WET/DRY ratio and lower PaO2 as compared with control rats, accompanied with impaired autophagy indicated by reduced LC-3II/LC-3I ratio and Beclin-1 expression, decreased superoxide dismutase (SOD) activity, and increased 15-F2t-Isoprostane formation in lung tissues, as well as increased levels of leukocyte count and proinflammatory cytokines in BAL fluid. Improving autophagy with Rap significantly attenuated all these changes, but the autophagy inhibitor 3-MA exhibited adverse or opposite effects as Rap. In conclusion, diabetic lungs are more vulnerable to myocardial IR, which are involved in impaired autophagy. Improving autophagy could attenuate ALI induced by myocardial IR in diabetic rats, possibly through inhibiting inflammatory reaction and oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.