Polyoxometalates (POMs) are a diverse class of anionic metal-oxo clusters with intriguing chemical and physical properties. Owing to unrivaled versatility and structural variation, POMs have been extensively utilized for catalysis for a plethora of reactions. In this focused review, the applications of POMs as promising catalysts or co-catalysts for CO2 conversion, including CO2 photo/electro reduction and CO2 as a carbonyl source for the carbonylation process are summarized. A brief perspective on the potentiality in this field is proposed.
The structural diversity and tenability observed in POMs has encouraged extensive investigations into their catalytic activity. Based on the structural classification of POMs, this review summarizes recent advances relating to POM‐catalyzed selective oxidation and places most emphasis on dynamic developments from 2015 onwards. Work which contributes to comparing the catalytic performance of POMs with delicate structural differences (e.g. the same type of POM structure with differences of the heteroatom, addenda, protonated state or counter‐ion) and in elucidating the origin/distinction of catalytic activity, as well as reasonable mechanisms, are especially highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.