Proliferating cell nuclear antigen (PCNA) is reported as a famous marker in various tumors. A couple of articles have been published about the clinical function of PCNA on cancer progression; however, these results are conflicting in some degree. Thus, it is crucial to perform a systematic review and meta-analysis to identify their real actions. Here, we took cervical cancer and glioma as example and then pooled hazard ratios (HRs) or odds ratios (ORs) with 95 % confidence intervals (95 % CIs). In the present study, the PCNA expression in cervical cancer and gliomas patients was both correlated with 5-year-overall survival (OS) (HR = 4.41, 95 % CI 2.71-7.17, p = 0.000; HR = 4.40, 95 % CI 3.00-6.47, p = 0.000; respectively). In addition, a fixed effect model revealed a significant association between PCNA and FIGO stage (OR = 4.48, 95 % CI 3.48-5.77, p = 0.000) or WHO grade (OR = 5.64, 95 % CI 4.15-7.68, p = 0.000), rather than age (OR = 1.01, 95 % CI 0.71-1.43, p = 0.957; OR = 1.00, 95 % CI 0.80-1.24, p = 0.989; respectively). No heterogeneity was observed across all studies. According to funnel plot, no publication bias was reported. In conclusion, our systematic review suggests that PCNA expression is significantly associated with poor 5-year survival, advanced stage or higher WHO grade, which might be suggested as a useful prognostic and diagnostic biomarker, or an effective therapy target in cervical cancer, gliomas, or even more cancers.
The oncogenic miR-21 has been widely recognized to promote the development and progression of various types of malignant tumors, but not cervical cancers. The aim of this study was to examine the expression of miR-21 and PTEN in cervical cancer specimens using quantitative PCR. The miR-21 level was then manipulated in the cervical cancer lines and the regulation of miR-21 on the proliferation, migration and invasion of cervical cancer cells was determined. Additionally, we determined the role of PTEN in the miR-21-regulated proliferation, migration and invasion of cervical cancer cells. miR-21 was upregulated in the cervical cancer specimens, negatively correlating with the PTEN mRNA level. Transfection of the miR-21 mimics was markedly promoted, whereas the miR-21 inhibitor suppressed the proliferation, migration and invasion of cervical cancer cells, with a significant inhibition of PTEN expression. In addition, the overexpression of PTEN markedly inhibited the proliferation and migration of the cervical cancer cells. The present study showed the upregulation of miR-21 in invasive cervical cancers, and confirmed the promotion of miR-21 with regard to the proliferation, migration and invasion in cervical cancer cells via inhibiting the PTEN expression. To the best of our knowledge, this is the first study to confirm that the miR-21/PTEN pathway promotes cervical cancer.
Interleukin‑17A (IL‑17A) is a CD4 T-cell-derived pro-inflammatory cytokine that is involved in human cervical tumorigenesis. Heparanase (HPSE) is an endo-glycosidase expressed in mammals, which has been confirmed to be associated with cervical cancer invasion. In the present study, it was hypothesized that IL‑17A and HPSE are key proteins promoting tumor angiogenesis and cell proliferation and invasion in cervical cancer. The expression of IL‑17A and HPSE in cervical cancer tissues was detected by immunohistochemical staining. In addition, the expression of IL‑17A and HPSE was down- and upregulated via RNAi and human recombinant proteins, and MTT and Transwell assays were performed to examine cervical cancer cell proliferation and invasion, respectively. Flow cytometry analysis was also performed to detect cell cycle distribution, and the levels of target mRNA and protein were evaluated by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. IL‑17A and HPSE were highly expressed in cervical cancer tissues, and microvessel density was notably higher in the IL‑17A-positive group. IL‑17A and/or HPSE recombinant protein promoted the proliferation and invasion of cervical cancer cells, increased the proportion of cells in the G2/M phase, and enhanced the mRNA and protein expression of human papillomavirus E6, P53, vascular endothelial growth factor and CD31, whereas downregulation of IL‑17A and/or HPSE exerted the opposite effects. Furthermore, downregulation of IL‑17A and/or HPSE was found to inhibit the expression of nuclear factor (NF)-κB P65. In summary, IL‑17A and HPSE may promote tumor angiogenesis and cell proliferation and invasion in cervical cancer, possibly via the NF-κB signaling pathway. These findings may lead to the identification of new diagnostic markers and therapeutic targets.
In recent years, the effects of quercetin on autophagy and apoptosis of cancer cells have been widely reported, while effects on HeLa cells are still unclear. Here, HeLa cells were subjected to quercetin treatment, and then proliferation, apoptosis, and autophagy were evaluated using MTT, flow cytometry, and MDC staining, respectively. The LC3-I/II, Beclin 1, active caspase-3, and S6K1 phosphorylation were detected using Western blot assay. The ultrastructure of HeLa was observed via transmission electron microscope (TEM). Our findings showed that quercetin can dose-dependently inhibit the growth of HeLa cells. The MDC fluorescence was enhanced with increased concentration of quercetin and hit a plateau at 50 μmol/l. Western blot assay revealed that LC3-I/II ratio, Beclin 1, and active caspase-3 protein were enforced in a dose-dependent method. However, the phosphorylation of S6K1 gradually decreased, concomitant with an increase of autophagy. In addition, TEM revealed that the number of autophagic vacuoles was peaked at 50 μmol/l of quercetin. Besides, interference of autophagy with 3-MA led to proliferation inhibition and increased apoptosis in HeLa cells, accompanied by the decreased LC3-I/II conversion and the increased active caspase-3. In conclusion, quercetin can inhibit HeLa cell proliferation and induce protective autophagy at low concentrations; thus, 3-MA plus quercetin would suppress autophagy and effectively increased apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.