Aiming at the problems of poor adaptability and low secret key generation rate of secret key generation scheme based on single characteristic parameter of wireless channel, a secret key generation method based on joint characteristic parameters of amplitude and phase of wireless channel is proposed. This method is based on the single-eavesdropping wireless fading channel model; the joint characteristic model of amplitude and phase of wireless fading channel is established; it detects and extracts the joint characteristic parameters of amplitude and phase of channel, and then the proposed characteristics are quantified by using the equal probability joint quantization strategy of amplitude and phase to generate the secret key random parameters. In this paper, the amplitude and phase joint feature parameter detection method of wireless channel can not only improve the generation rate of random secret key parameters but also make the eavesdropping party’s eavesdropping error rate closer to 0.5. The test results show that the proposed scheme can significantly improve the rate, reliability, and security of generating key random parameters.
Using wireless relay nodes to cooperate is a very important helpful way to improve the physical layer security performance. In this paper, in the presence of an eavesdropping node between the source and destination nodes, a decoded and forward technology is used to form a virtual beam through the relay nodes, which selectively enables the main lobe to point to the destination node to achieve the secure communication of the physical layer. However, this situation often requires the assumption that the relay nodes involved in collaborative help can unconditionally and unselfishly assist other nodes in secure communication. In the actual heterogeneous wireless network environment, each wireless node has selfishness, and their relationship is not only cooperative but also competitive. First, in order to encourage the active participation of the relay nodes, the relationship between the source nodes and the cooperative relay nodes is modeled as the Stackelberg game. Through this game, the dynamic compensation of the power consumed for the cooperative nodes is achieved. Then, in order to promote the virtuous competition among the relay nodes involved in the cooperation, the competition relationship among the participating cooperation nodes is constructed as a noncooperative game. The game will enable all cooperative relay nodes to dynamically and reasonably charge the consumed power. In the case of a certain security rate, this paper proves the power allocation of the source node and the cooperative relay node, as well as the existence and uniqueness of the equilibrium point of the power price. And the convergent search algorithm is given. The simulation results show that the distribution power of the source node and the cooperative relay node will be dynamically optimized with the dynamic change of channel characteristics. The power pricing of the relay nodes will also change with the dynamic changes of channel characteristics and node distribution. In addition, when the number of relay nodes participating in cooperation exceeds 6, the additional revenue to the source node is less.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.