The vitamin A component retinol has become an increasingly sought-after cosmetic ingredient. In previous efforts for microbial biosynthesis of vitamin A, a mixture of retinoids was produced. In order to efficiently produce retinol at high purity, the precursor and NADPH supply was first enhanced to improve retinoids accumulation in the S. cerevisiae strain constructed from a β-carotene producer by introducing β-carotene 15,15ʹ-dioxygenase, following by screening of heterologous and endogenous oxidoreductases for retinal reduction. Env9 was found as an endogenous retinal reductase and its activity was verified in vitro. By co-expressing Env9 with the E. coli ybbO, as much as 443.43 mg/L of retinol was produced at 98.76% purity in bi-phasic shake-flask culture when the antioxidant butylated hydroxytoluene was added to prevent retinoids degradation. The retinol titer reached 2479.34 mg/L in fed-batch fermentation. The success in selective biosynthesis of retinol would lay a solid foundation for its biotechnological production. Graphical Abstract
Retinoic acid (RA), a vitamin A (retinol)‐derived lipophilic compound, is involved in various physiological functions. The demand for RA is growing in the pharmaceutical industry, but RA biosynthesis is still in its infancy compared to other forms of retinoids such as retinol and retinal, largely due to the lack of efficient retinal dehydrogenases. To achieve effective biosynthesis of RA, the catalytic activities of exogenous retinal dehydrogenases were comparatively analyzed in a previously constructed retinoids‐producing Saccharomyces cerevisiae strain, followed by mining of endogenous enzymes with higher retinal dehydrogenase activities using homology‐based search. After confirming the retinal oxidation activity of the endogenous aldehyde dehydrogenase Hfd1 using in vivo and in vitro experiments, it was overexpressed in multiple copies, and the resulting strain produced 99.71 mg/L of RA in shake‐flask cultures. Finally, 545.28 mg/L of RA was produced in fed‐batch fermentation. This study suggests the yeast endogenous Hfd1 as a potent catalyst for RA biosynthesis, and demonstrates the potential of yeast as a platform for RA production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.