Although diaryl tellurides are parent organotellurium compounds, their synthesis methods, especially for unsymmetrical ones, are limited. This may be due to the instability of diaryl tellurides and their synthesis intermediates under reaction conditions. Radical reactions are known to exhibit excellent functional group selectivity; therefore, we focused on a bimolecular homolytic substitution (SH2) reaction between the aryl radical and diaryl ditelluride. Aryl radicals are generated from arylhydrazines in air and captured by diaryl ditellurides, resulting in a selective formation of unsymmetrical diaryl tellurides with high yields. The electronic effects of the substituents on both arylhydrazines and diaryl ditellurides on the SH2 reaction of tellurium are also discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.