Searching for new materials and phenomena to enable voltage control of magnetism and magnetic properties holds compelling interest for the development of low-power nonvolatile memory devices. In particular, reversible and nonvolatile ON/OFF controls of magnetism above room temperature are highly desirable yet still elusive. Here, we report on a nonvolatile voltage control of magnetism in epitaxial SrCo1–x Fe x O3−δ (SCFO). The substitution of Co with Fe significantly changes the magnetic properties of SCFO. In particular, for the Co/Fe ratio of ∼1:1, a switch between nonmagnetic (OFF) and ferromagnetic (ON) states with a Curie temperature above room temperature is accomplished by ionic liquid gating at ambient conditions with voltages as low as ±2 V, even for films with thickness up to 150 nm. Tuning the oxygen stoichiometry via the polarity and duration of gating enables reversible and continuous control of the magnetization between 0 and 100 emu/cm3 (0.61 μB/f.u.) at room temperature. In addition, SCFO was successfully incorporated into self-assembled two-phase vertically aligned nanocomposites, in which the reversible voltage control of magnetism above room temperature is also attained. The notable structural response of SCFO to ionic liquid gating allows large strain couplings between the two oxides in these nanocomposites, with potential for voltage-controlled and strain-mediated functionality based on couplings between structure, composition, and physical properties.
Highly efficient photocatalytic hydrogen evolution (PHE) is highly desirable for addressing the global energy crisis and environmental problems. Although much attention has been given to electron-hole separation, ridding photocatalysts of poor efficiency remains challenging. Here, a two-electron catalytic reaction is developed by utilizing the distinct trion behavior of ReS and the efficient reduction of two H (2H + 2e → H ) is realized. Due to the monolayer-like structure of the catalyst, the free electrons in ReS can be captured by the tightly bound excitons to form trions consisting of two electrons and one hole. These trions can migrate to the surface and participate in the two-electron reaction at the abundant active sites. As expected, such a two-electron catalytic reaction endows ReS with a PHE rate of 13 mmol g h under visible light irradiation. Meanwhile, this reaction allows the typically poor PHE efficiency of pure transition metal dichalcogenides to be overcome. The proposed two-electron catalytic reaction provides a new approach to the design of photocatalysts for PHE.
Autophagy is a lysosome-dependent, self-renewal mechanism that can degrade and recycle cellular components in eukaryotic cells to maintain the stability of the intracellular environment and the cells ability to cope with unfavorable environments. Numerous studies suggest that autophagy participates in regulating various cellular functions and is closely associated with the onset and progression of various diseases. Wound healing is a complex, multistep biological process that involves multiple cell types. Refractory wounds, which include diabetic skin ulcers, can seriously endanger human health. Previous studies have confirmed that autophagy plays an essential role in various phases of wound healing. Specifically, in the inflammatory phase, autophagy has an anti-infection effect and it negatively regulates the inflammatory response, which prevents excessive inflammation from causing tissue damage. In the proliferative phase, local hypoxia in the wound can induce autophagy, which plays a role in anti-apoptosis and anti-oxidative stress and promotes cell survival. Autophagy of vascular endothelial cells promotes wound angiogenesis and that of keratinocytes promotes their differentiation, proliferation and migration, which is conducive to the completion of wound re-epithelialisation. In the remodeling phase, autophagy of fibroblasts affects the formation of hypertrophic scars. Additionally, a refractory diabetic wound may be associated with increased levels of autophagy, and the regulation of mesenchymal stem cell autophagy may improve its application to wound healing. Therefore, understanding the relationship between autophagy and skin wound healing and exploring the molecular mechanism of autophagy regulation may provide novel strategies for the clinical treatment of wound healing.
Covalent Organic Frameworks (COFs) have recently emerged as light‐harvesting devices, as well as elegant heterogeneous catalysts. The combination of these two properties into a dual catalyst has not yet been explored. We report a new photosensitive triazine‐based COF, decorated with single Ni sites to form a dual catalyst. This crystalline and highly porous catalyst shows excellent catalytic performance in the visible‐light‐driven catalytic sulfur–carbon cross‐coupling reaction. Incorporation of single transition metal sites in a photosensitive COF scaffold with two‐component synergistic catalyst in organic transformation is demonstrated for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.