IntroductionThe aim of the study was to explore an effective method to induce adipose-derived stem cells (ADSCs) to differentiate into Schwann-like cells in vitro.Material and methodsReagents were applied in two different ways (Dezawa inducing method and modified inducing method) in which inducers including β-mercaptoethanol (β-ME), all-trans-retinoic acid (ATRA), type I collagenase, forskolin, heregulin, basic fibroblast growth factor (BFGF) and brain-derived neurotrophic factor (BDNF) were used in different ways to induce ADSCs of rats to differentiate into Schwann-like cells. After induction, the cell morphologic characteristics and the cellular immunohistochemical staining positive rate of anti-S100 and anti-GFAP (glial fibrillary acidic protein) antibodies and the gray value of immunocytochemical dye with anti-S100 and anti-GFAP antibodies and cell activity measured by the MTT method were compared with each other to evaluate the induction effects.ResultsBoth methods can induce differentiation of ADSCs of rats into Schwann-like cells, but the cellular morphology of the modified method was more similar to Schwann cells than that of the Dezawa inducing method, there was a higher cellular immunohistochemical staining positive rate and staining grey value in immunocytochemical dye with anti-S100 and anti-GFAP antibodies, and less damage in the cell activity of the modified inducing method than that of the Dezawa inducing method.ConclusionsThe effect of the modified method to induce ADSCs to differentiate into Schwann-like cells in vitro is superior to that of the Dezawa inducing method.
To investigate the morphological differences among acellular rat nerve scaffolds processed by different chemical methods and compare the biocompatibility between rat nerve grafts processed by different chemical methods and rat adipose-derived stem cells in vitro. Acellular rat sciatic nerve scaffolds processed by two different chemical methods (the Sondell method and the optimized method) and normal rat sciatic nerves were used as control. The structure and components of nerve scaffold were observed under microscopy, the degrees of decellularization and demyelination of nerve scaffold and integrity of nerve fiber tubes were assessed. The rat adipose-derived stem cells growth and adherence on scaffold were studied by scanning electron microscopy, the activity and adhesive ratio of rat adipose-derived stem cells in the nerve scaffold were compared. The basal lamina tubes and the extracellular matrix in the epineurium and perineurium in the nerve graft of optimized method were better preserved than the nerve graft of the Sondell method. After co-cultured with scaffolds, the difference of cell activity between three groups (two cell-scaffold combinations and control group) at the same observation time were not statistically significant (P > 0.05),the adhesive ratio of rat adipose-derived stem cells in the scaffold of the optimized method was better than that of the Sondell method. The scaffold of the optimized method is more effective than the scaffold of the Sondell method for peripheral nerve tissue engineering.
Objective. To investigate the effect of tissue engineering nerve on repair of rat sciatic nerve defect. Methods. Forty-five rats with defective sciatic nerve were randomly divided into three groups. Rats in group A were repaired by acellular nerve grafts only. Rats in group B were repaired by tissue engineering nerve. In group C, rats were repaired by autogenous nerve grafts. After six and twelve weeks, sciatic nerve functional index (SFI), neural electrophysiology (NEP), histological and transmission electron microscope observation, recovery ratio of wet weight of gastrocnemius muscle, regenerated myelinated nerve fibers number, nerve fiber diameter, and thickness of the myelin sheath were measured to assess the effect. Results. After six and twelve weeks, the recovery ratio of SFI and wet weight of gastrocnemius muscle, NEP, and the result of regenerated myelinated nerve fibers in groups B and C were superior to that of group A (P < 0.05), and the difference between groups B and C was not statistically significant (P > 0.05). Conclusion. The tissue engineering nerve composed of acellular allogenic nerve scaffold and Schwann cells-like cells can effectively repair the nerve defect in rats and its effect was similar to that of the autogenous nerve grafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.