Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C3 plants, while for the diet of leporids, more than 16% of plant species are identified as C4 (31% species are from Poaceae). The ability of several leporid species to consume C4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C4 plants in the late Miocene, the so-called ‘nature’s green revolution’, induced by global environmental change, is suggested to be one of the major ‘ecological opportunities’, which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids.
Th e biodiversity of non-volant small mammals along an extensive subtropical elevational gradient was studied for the fi rst time on Gongga Mountain, the highest mountain in Hengduan Mountain ranges in China, located in one of the 25 global biodiversity hotspots. Non-volant small mammals were replicate sampled in two seasons at eight sampling sites between 1000 and 4200 m elevation on the eastern slope of Gongga Mountain. In all, 726 individual small mammals representing 25 species were documented in 28 800 trap nights. Th e species richness pattern for non-volant small mammals along the elevational gradients was hump-shaped with highest richness at mid-elevations. However, diff erent richness patterns emerged between endemic and non-endemic species, between larger-ranged and smaller-ranged species and between rodents and insectivores. Temperature, precipitation, plant species richness and geometric constraints (middomain eff ect) were most signifi cant in explaining species richness patterns. Based on the analysis of simple ordinary least squares (OLS) and stepwise multiple regressions, the overall richness pattern, as well as the pattern of insectivores, endemic species and larger-ranged species showed strong correlation with geometric constraint predictions. However, nonendemic species richness was more strongly correlated with temperature, while rodent richness was correlated with plant species richness. Our study shows that no single key factor can explain all richness patterns of non-volant small mammals. We need to be cautious in summarizing a general richness pattern of large species groups (e.g. small mammals or mammals) from species in smaller groups having diff erent ecological distributions and life histories. Elevational richness patterns and their driving factors for small mammals are more likely dependent on what kind of species we study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.