Although pediatric-like treatment regimen has remarkably improved the survival rates of adults with acute lymphoblastic leukemia (ALL), the outcome of some adult patients is still poor owing to adverse genetic features. These molecular abnormalities, especially gene deletions, may be considered for the prognosis assessment for adult patients with ALL. In this study, using multiplex ligation-dependent probe amplification (MLPA) method, gene deletions were analyzed in from 211 adult B-ALL patients treated in our center. The data showed that 68.2% (144/211) adult B-ALL patients carried gene deletions, and the frequency is much higher in Ph+B-ALL patients. IKZF1 gene deletion is the most common gene deletion in adult B-ALL, followed by CDKN2A/B deletion. In Ph-B-ALL patients, the overall survival of patients with gene deletions is inferior to that of patients without any gene deletions. More obviously, patients with IKZF1 or CDKN2A/B deletion had a worse prognosis, whereas, allogeneic hematopoietic stem cell transplantation could improve OS in patients with IKZF1 deletion, but not in patients with CDKN2A/B deletion. Moreover, the outcome of Ph-B-ALL patients with double deletion of IKZF1and CDKN2A/B may be much worse than that of patients with IKZF1 or CDKN2A/B alone. Minimal residual disease (MRD) was also analyzed together with gene deletions and demonstrated that gene deletions have a negative impact on survival only in MRD positive Ph-B-ALL patients. In conclusion, gene deletions are closely related with the prognosis of adult Ph-B-ALL patients.
Methotrexate (MTX) has an antitumor effect when used for the treatment of acute lymphoblastic leukemia (ALL). This study aims at evaluating the associations between 14 polymorphisms of six genes involved in MTX metabolism with serum MTX concentration and toxicity accompanying high-dose MTX. Polymorphisms in 183 Chinese patients with ALL were analyzed using TaqMan single nucleotide polymorphism genotyping assay. The serum MTX concentration was determined using homogeneous enzyme immunoassay. MTX-related toxicities were also evaluated. Renal toxicity was significantly associated with higher serum MTX concentrations at 24, 48, and 72 hours, and MTX elimination delay (P = 0.001, P < 0.001, P < 0.001, and P < 0.001, respectively), whereas SLCO1B1 rs4149056 was associated with serum MTX concentrations at 48 and 72 hours, and MTX elimination delay in candidate polymorphisms (P = 0.014, P = 0.019, and P = 0.007, respectively). SLC19A1 rs2838958 and rs3788200 were associated with serum MTX concentrations at 24 hours (P = 0.016, P = 0.043, respectively). MTRR rs1801394 was associated with serum MTX concentrations at 72 hours (P = 0.045). Neutropenia was related to SLC19A1 rs4149056 (odds ratio [OR]: 3.172, 95% confidence interval [CI]: 1.310-7.681, P = 0.011). Hepatotoxicity was associated with ABCC2 rs2273697 (OR: 3.494, 95% CI: 1.236-9.873, P = 0.018) and MTRR rs1801394 (OR: 0.231, 95% CI: 0.084-0.632, P = 0.004). Polymorphisms of SLCO1B1, SLC19A1, ABCC2, and MTRR genes help predict higher risk of increased MTX levels or MTX-related toxicities in adult ALL patients.
Very few reports elucidate the prognosis of patients with TP53 aberrations using both measurable residual disease (MRD) and the status of having undergone allogeneic hematopoietic stem cell transplantation (allo-SCT). In this study, aberrations of TP53 were analyzed using next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) in patients with Philadelphia chromosome-negative (Ph−) ALL enrolled in a prospective single-arm clinical trial at our leukemia center. We analyzed the survival of the patients grouped according to the MRD level at the third month and whether or not received allo-SCT. We found that allo-SCT could improve the OS in patients with TP53 aberrations; Patients having negative MRD at the third month still showed worse 3-year OS and 3-year DFS without undergoing allo-SCT, which is different from previous studies, moreover, the prognostic significance of TP53 deletions was as important as TP53 mutations, the importance of screening both TP53 deletions and mutations in adult Ph− ALL at diagnosis should be emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.