Traditional physical-based models have generally been used to model the resistive-switching behavior of resistive-switching memory (RSM). Recently, vacancy-based conduction-filament (CF) growth models have been used to model device characteristics of a wide range of RSM devices. However, few have focused on learning the other-device-parameter values (e.g., low-resistance state, high-resistance state, set voltage, and reset voltage) to compute the compliance-current (CC) value that controls the size of CF, which can influence the behavior of RSM devices. Additionally, traditional CF growth models are typically physical-based models, which can show accuracy limitations. Machine learning holds the promise of modeling vacancy-based CF growth by learning other-device-parameter values to compute the CC value with excellent accuracy via examples, bypassing the need to solve traditional physical-based equations. Here, we sidestep the accuracy issues by directly learning the relationship between other-device-parameter values to compute the CC values via a data-driven approach with high accuracy for test devices and various device types using machine learning. We perform the first modeling with machine-learned device parameters on aluminum-nitride-based RSM devices and are able to compute the CC values for nitrogen-vacancy-based CF growth using only a few RSM device parameters. This model may now allow the computation of accurate RSM device parameters for realistic device modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.