We investigated a method to quantify field-state wheat RSA in a phenotyping way, depicting the 3D topology of wheat RSA in 14d periods. The phenotyping procedure, proposed for understanding the spatio-temporal variations of root-soil interaction and the RSA dynamics in the field, is realized with a set of indices of mm scale precision, illustrating the gradients of both wheat root angle and elongation rate along soil depth, as well as the foraging potential along the side directions. The 70d was identified as the shifting point distinguishing the linear root length elongation from power-law development. Root vertical angle in the 40 mm surface soil layer was the largest, but steadily decreased along the soil depth. After 98d, larger root vertical angle appeared in the deep soil layers. PAC revealed a stable root foraging potential in the 0–70d period, which increased rapidly afterwards (70–112d). Root foraging potential, explained by MaxW/MaxD ratio, revealed an enhanced gravitropism in 14d period. No-till post-paddy wheat RLD decreased exponentially in both depth and circular directions, with 90% roots concentrated within the top 20 cm soil layer. RER along soil depth was either positive or negative, depending on specific soil layers and the sampling time.
Understanding chemistry and the effects of humic substances on plant growth is important for using organic fertilizer or soil amendment for sustainable snap bean production. The objective of this study was to characterize different fractions of humic acid (HA) derived from Leonardite and evaluate their effects on seedling growth and nutrient uptake of snap bean (Phaseolus vulgaris L.). HAs extracted from Leonardite were separated based on molecular weights into three fractions (HS1, HS2, HS3) plus sediment (SED). With direct polarization combined with spectral editing techniques, functional groups of HAs were quantified and the results indicated that HAs with low molecular weights had more O-alkyl and carboxyl C groups than those with large molecular sizes. A plant growth experiment was conducted as a randomized split-plot design with three replications and repeated for three plantings. The results show that addition of HAs was beneficial to leaf and root growth of snap bean compared with the control (no HA). Plants treated with low-molecular weight HAs had significantly greater root length, root surface area, and uptake of potassium by shoot than those treated with other HAs, while leaf growth was affected mainly by HAs with high molecular weight.
Conservation tillage is an energy efficient and low cost tillage system to improve soil environment compared with conventional tillage systems. However, the rice residue management becomes an “impossible to achieve” task due to high soil moisture content at harvest time and the thickness of rice straw. Disc type furrow openers are used for both seed drilling as well as straw cutting during no tillage sowing. A study was conducted to evaluate the draft requirement and straw cutting performances of different sized furrow openers in no-till paddy soil conditions. Double disc furrow opener was tested on an in-field traction bench for three working depths, i.e. 30, 60 and 90 mm, and three forwarding speeds, i.e. 0.1, 0.2 and 0.3 m/s. The draft and vertical forces on the disc were recorded with load cells. These sensors were connected to a data acquisition system developed with hardware and software. The results revealed that the size of the furrow opener, operating depth and the forwarding speed had significant effects (P<0.05) on the horizontal and vertical forces, and the straw cutting performance. Mean values of the draft were 648.9, 737.2 and 784.6 N for the opener with diameters of 330, 450 and 600 mm respectively, and the vertical forces for similar openers were 904.7, 1553.9 and 1620.4 N, respectively. Furthermore, the mean straw cutting efficiencies for the double disc opener with diameters of 330, 450 and 600 mm were 39.36, 78.47 and 65.46%, respectively. The opener with 450 mm diameter provided higher straw cutting efficiency as compared to 600 mm diameter disc, while lowest straw cutting efficiency was observed with 330 mm diameter disc. The 450 mm diameter opener provided the highest straw cutting efficiency (88.6%) at 90 mm working depth and expressed optimum performance compared with other furrow openers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.