This paper reports the first report of rapid, reversible direct electron transfer between a redox protein, specifically, horse myoglobin, and a solid electrode substrate in nonaqueous media and the spectroscopic (UV-vis, fluorescence, and resonance Raman) characterization of the relevant redox forms of myoglobin (Mb) in dimethyl sulfoxide (DMSO). In DMSO, the heme active site of metmyoglobin (metMb) appears to remain six-coordinate high-spin, binding water weakly. Changes in the UV-fluorescence spectra for metMb in DMSO indicate that the protein secondary structure has been perturbed and suggest that helix A has moved away from the heme. UV-vis and RR spectra for deoxyMb in DMSO suggest that the heme iron is six-coordinate low-spin, most likely coordinating DMSO. Addition of CO to deoxyMb in DMSO produces a single, photostable six-coordinate CO adduct. UV-vis and RR for Mb-CO in DMSO are consistent with a six-coordinate low-spin heme iron binding His93 weakly, if at all. The polarity of the distal heme pocket is comparable to that of the closed form of horse Mb-CO in aqueous solution, pH 7. Direct electron transfer between horse Mb and Au in DMSO solution was investigated by cyclic voltammetry. Mb exhibits stable and well-defined electrochemical responses that do not appear to be affected by the water content (1.3-7.5%). The electrochemical characteristics are consistent with a one-electron, quasi-reversible, diffusion-controlled charge transfer process at Au. E degrees for horse Mb in DMSO at Au is -0.241+/-0.005 V vs. NHE. The formal heterogeneous electron transfer rate constant, calculated from delta E(p) at 20 mV/s, is 1.7+/-0.5 x 10(-4) cm/s. The rate, which is unaffected by the presence of 1.3-7.5% water, is competitive with that previously reported for horse Mb in aqueous solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.