Subsea Flange Connection Tool (SFCT) is a remote apparatus for connecting underwater bolted flanges, especially applied in the offshore pipeline laying. As a pivotal unit construction of SFCT, Inner-frame enables the Bolt Handling Tool and Nut Handling Tool to move separately in axial direction and together in circumferential direction with the reference of the pipe’s axes. This paper presents the Inner-frame’s structural concept and builds its kinematics-equivalent mechanism models, carrying on the kinematics analysis of Inner-frame; to improve the energy efficiency, models the Inner-frame’s rotation-mechanism parametrically and establishes an objective with the minimum power consumption, which generates the optimal positions for the hinged-hydraulic cylinder’s joints with Box and Pendulum.
Remote sensing satellites equipped with large synthetic aperture radar (SAR) can image the earth in all weather and lighting conditions. For high packaging efficiency in launch and precise configuration on orbit, deployable mechanisms are designed to deploy the large SAR antenna panels. For the two-panel antenna, a six-bar-linkage deployable driving mechanism is designed. According to the design, a parameterized dynamic model is built in ADAMS software with secondary development technology to obtain its dynamics characteristics through simulation analysis. To improve the dynamic characteristics and the precision of deployment design of experiments and optimizations were carried through in this paper.
To study the dynamic behavior of the extendible support structure deployment, a digital simulation using the multibody system dynamics methodology is conducted. Floating frame of reference formulations are used to establish the flexible dynamics model, in which the deformation vector of each flexible part is modeled with the component mode synthesis technique based on the Craig-Bampton method. Modal truncation is implemented through modal participation factors to reduce the computational burden. Angular displacements results of antenna panels as well as those of truss rods are then obtained and show that all parts of the structure have reached accurate positions and keep stable after deployment as expected. Start torque of the driving motor is also acquired and proved acceptable according to the design requirements. Impact forces acting on the hinges at locking moment are finally extracted to evaluate performances of locking processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.