The characteristics of a stable discharge at atmospheric pressure is investigated.The plasma source consisted of two closely spaced parallel-plated perforated electrodes, driven by a radio frequency power to generate a uniform cold plasma in Helium at atmospheric pressure. Both alpha and gamma modes were clearly observed. The hollow cathode effects were found in the discharge. The influence of the dielectric barrier on the discharge was also investigated by utilizing a surface-anodized aluminium electrode as the anode.
The configuration and mechanism of a microhollow cathode discharge (MHCD) is introduced in this paper. The focus is a new type of cold atmospheric large-area plasma source, the fused hollow cathode (FHC) plasma source based on radio frequency hollow cathodes. Through its applications and related research, we present the characteristics of the hollow cathode discharge and the factors on which its characteristics depend, such as the cathode material, gas specy, frequency, gas flow, pressure, inner diameter of cathode, and the like. Two other types of related MHCD systems are given in addition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.