Abstract. Upregulated expression of the CXC chemokine receptor type 7 (CXCR7) promotes breast, lung and prostate cancer progression and metastasis. However, the role of CXCR7 in colon cancer has not been determined. We hypothesized that increased CXCR7 expression may contribute to human colon cancer occurrence and progression. Reverse transcription quantitative polymerase chain reaction and western blot analysis were performed on 34 malignant and 18 normal colon tissue specimens. The specimens were obtained from 19 male and 15 female patients, with a mean age of 52 years (range, 34-79 years). Of the 34 patients, 20 had lymph node metastases. None of the patients had received adjuvant radiotherapy or chemotherapy prior to surgery. This study demonstrated that CXCR7 levels were significantly higher in colon tumors compared with those in normal colon tissue (P﹤0.01). In addition, lymph node metastatic colon tumors exhibited significantly higher CXCR7 expression compared with non-metastatic tumors (P﹤0.01); however, there were no differences in CXCR7 expression among distinct histopathological types (well-differentiated vs. moderately-to-poorly differentiated adenocarcinoma, P﹥0.01). Therefore, the evidence obtained from the present study supports involvement of the upregulated CXCR7 expression in colon tumorigenesis and lymph node metastasis.
Numerous colon cancer cases are resistant to chemotherapy based on oxaliplatin and suffer from relapse. A number of survival- and prognosis-related biomarkers have been identified based on database mining for patients who develop drug resistance, but the single individual gene biomarker cannot attain high specificity and sensitivity in prognosis prediction. This work was conducted aiming to establish a new gene signature using oxaliplatin resistance-related genes to predict the prognosis for colon cancer. To this end, we downloaded gene expression profile data of cell lines that are resistant and not resistant to oxaliplatin from the Gene Expression Omnibus (GEO) database. Altogether, 495 oxaliplatin resistance-related genes were searched by weighted gene co-expression network analysis (WGCNA) and differential expression analysis. As suggested by functional analysis, the above genes were mostly enriched into cell adhesion and immune processes. Besides, a signature was built based on four oxaliplatin resistance-related genes selected from the training set to predict the overall survival (OS) by stepwise regression and least absolute shrinkage and selection operator (LASSO) Cox analysis. Relative to the low risk score group, the high risk score group had dismal OS (P < 0.0001). Moreover, the area under the curve (AUC) value regarding the 5-year OS was 0.72, indicating that the risk score was accurate in the prediction of OS for colon cancer patients (AUC >0.7). Additionally, multivariate Cox regression suggested that the signature constructed based on four oxaliplatin resistance-related genes predicted the prognosis for colon cancer cases [hazard ratio (HR), 2.77; 95% CI, 2.03–3.78; P < 0.001]. Finally, external test sets were utilized to further validate the stability and accuracy of oxaliplatin resistance-related gene signature for prognosis of colon cancer patients. To sum up, this study establishes a signature based on four oxaliplatin resistance-related genes for predicting the survival of colon cancer patients, which sheds more light on the mechanisms of oxaliplatin resistance and helps identify colon cancer cases with a dismal prognostic outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.