Tigecycline serves as one of the antibiotics of last resort to treat multidrug-resistant (including carbapenem-resistant) pathogens. However, the recently emerged plasmid-mediated tigecycline resistance mechanism, Tet(X), challenges the clinical efficacy of this class of antibiotics. In this study, we detected 180 tet(X)-harboring Acinetobacter isolates (8.9%, n = 180) from 2,018 samples collected from avian farms and adjacent environments in China. Eighteen tet(X)-harboring isolates (10.0%) were found to cocarry the carbapenemase gene blaNDM-1, mostly from waterfowl samples (94.4%, 17/18). Interestingly, among six Acinetobacter strains, tet(X) and blaNDM-1 were found to colocalize on the same plasmids. Moreover, whole-genome sequencing (WGS) revealed a novel orthologue of tet(X) in the six isolates coharboring tet(X) and blaNDM-1. Inverse PCR suggested that the two tet(X) genes form a single transposable unit and may be cotransferred. Sequence comparison between six tet(X)- and blaNDM-1-coharboring plasmids showed that they shared a highly homologous plasmid backbone even though they were isolated from different Acinetobacter species (three from Acinetobacter indicus, two from Acinetobacter schindleri, and one from Acinetobacter lwoffii) from various sources and from different geological regions, suggesting the horizontal genetic transfer of a common tet(X)- and blaNDM-1-coharboring plasmid among Acinetobacter species in China. Emergence and spread of such plasmids and strains are of great clinical concern, and measures must be implemented to avoid their dissemination.
The emergence of the plasmid-mediated high-level tigecycline resistance mechanism Tet(X) threatens the role of tigecycline as the “last-resort” antibiotic in the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. Compared with that of the prototypical Tet(X), the enzymatic activities of Tet(X3) and Tet(X4) were significantly enhanced, correlating with high-level tigecycline resistance, but the underlying mechanisms remain unclear. In this study, we probed the key amino acid changes leading to the enhancement of Tet(X) function and clarified the structural characteristics and evolutionary path of Tet(X) based upon the key residue changes. Through domain exchange and site-directed mutagenesis experiments, we successfully identified five candidate residues mutations (L282S, A339T, D340N, V350I, and K351E), involved in Tet(X2) activity enhancement. Importantly, these 5 residue changes were 100% conserved among all reported high-activity Tet(X) orthologs, Tet(X3) to Tet(X7), suggesting the important role of these residue changes in the molecular evolution of Tet(X). Structural analysis suggested that the mutant residues did not directly participate in the substrate and flavin adenine dinucleotide (FAD) recognition or binding, but indirectly altered the conformational dynamics of the enzyme through the interaction with adjacent residues. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and UV full-wavelength scanning experiments confirmed that each mutation led to an increase in activity without changing the biochemical properties of the Tet(X) enzyme. Further phylogenetic analysis suggested that Riemerella anatipestifer served as an important incubator and a main bridge vector for the resistance enhancement and spread of Tet(X). This study expands the knowledge of the structure and function of Tet(X) and provides insights into the evolutionary relationship between Tet(X) orthologs.
IMPORTANCE The newly emerged tigecycline-inactivating enzymes Tet(X3) and Tet(X4), which are associated with high-level tigecycline resistance, demonstrated significantly higher activities in comparison to that of the prototypical Tet(X) enzyme, threatening the clinical efficacy of tigecycline as a last-resort antibiotic to treat multidrug-resistant (MDR) Gram-negative bacterial infections. However, the molecular mechanisms leading to high-level tigecycline resistance remain elusive. Here, we identified 5 key residue changes that lead to enhanced Tet(X) activity through domain swapping and site-directed mutagenesis. Instead of direct involvement with substrate binding or catalysis, these residue changes indirectly alter the conformational dynamics and allosterically affect enzyme activities. These findings further broaden the understanding of the structural characteristics and functional evolution of Tet(X) and provide a basis for the subsequent screening of specific inhibitors and the development of novel tetracycline antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.