Oxymatrine (OMT), a natural quinolizidine alkaloid, has been known to have anti-inflammation, anti-anaphylaxis, and chemopreventive effects on various cancer cells. To clarify the underlying role and molecular mechanisms of OMT in human hemangioma (HA), in the present study, we examined the expression of hypoxia-inducible factor-1a (HIF-1a) and vascular endothelial growth factor (VEGF) in different phases of human HA. After HA derived endothelial cells (HDEC) were pretreated with different concentrations of OMT, cell proliferation, apoptosis, and cycle distribution were evaluated by MTT assay and flow cytometry analysis, respectively. The effects of OMT on expression of HIF-1a signaling were determined by real-time PCR and western blot assays. Our results showed that, the expression of HIF-1a and VEGF was significantly increased in proliferating phase HA, but decreased in involuting phase HA. Moreover, OMT in vitro inhibited proliferative activities and induced cell apoptosis and cycle arrest in G 0 /G 1 phase in HA cells with decreased expression of HIF-1a, VEGF, Bcl-2, and CyclinD1, and increased expression of p53. Taken together, our findings suggest that, the expression of HIF-1a and VEGF is increased in proliferating phase HA, and OMT suppresses cell proliferation and induces cell apoptosis and cycle arrest in proliferative phase HA through inhibition of the HIF-1a signaling pathway, suggesting OMT may provide a novel therapeutic strategy for the treatment of HA.
Abstract. Insulin-like growth factor-II (IGF-II)/IGF2R signaling plays a pivotal role in cell growth, migration and differentiation in many malignancies. An individual with high IGF-II expression levels has a high risk of developing cancer, but IGF2R is often considered to be a tumor suppressor. To date, little has been reported about the role of IGF-II/IGF2R signaling in hemangiomas (HAs). Thus, uncovering the mechanisms of IGF-II/IGF2R signaling is very important to understanding the development of HAs. In the present study, the expression of IGF-II and IGF2R was investigated in 27 cases of HAs of different phases by immunohistochemistry. Through lentivirus-mediated IGF2R siRNA (Lv-siIGF2R) in HA-derived endothelial cells (HDECs), we observed the effects of IGF2R knockdown on the biological behavior of HA cells. We found that the expression of IGF-II and IGF2R was significantly increased in proliferating phase HAs, but decreased in involuting phase HAs. Furthermore, knockdown of IGF2R in vitro significantly diminished the proliferative activity and induced apoptosis and cycle arrest with decreased expression of PCNA, Ki-67, Bcl-2, Cyclin D1 and E and increased the expression of Bax in the proliferative phase HAs (HDEC and CRL-2586 EOMA cells). In addition, the tumor volumes in a subcutaneous HDEC nude mouse model treated with Lv-siIGF2R were significantly smaller than those of the control group. Taken together, our findings indicate that the expression of IGF-II and IGF2R is increased in proliferating phase HAs, and knockdown of IGF2R suppresses proliferation and induces apoptosis in HA cells in vitro and in vivo, suggesting that IGF2R may represent a novel therapeutic target for the treatment of human HAs.
Livin, a novel member of the human inhibitors of apoptosis protein family, has been shown to be critical for tumor progression and poor prognosis for several types of malignancies. However, limited reports exist regarding the biological functions of Livin in human gastric cancer (GC). The present study investigated the clinical significance of Livin and caspase-3 (CAS-3) in human GC using immunohistochemistry assay, and explore the potential using RNA interference to knockdown Livin expression, including the subsequent effects on tumor growth and invasion in GC cells in vitro and in vivo. Our results showed that the rate of positive expression of Livin was significantly higher in GC tissues compared to that in adjacent non-cancer tissues (ANCT) (64.1 vs. 30.8%, P<0.001), while CAS-3 was lower in GC tissues than in ANCT (33.3 vs. 66.7%, P=0.001). Livin expression was positively correlated with tumor differentiation and lymph node metastases (P=0.009; P=0.007), while CAS-3 was negatively correlated with them (P=0.036; P=0.002) in patients with GC. Furthermore, knockdown of Livin inhibited cell proliferative activities and invasive potential, and induced cell in situ apoptosis in GC cells, accompanied with decreased expression of p38 MAPK, VEGF and MMP-2 and increased expression of CAS-3. In addition, the tumor volumes in the SGC7901 subcutaneous nude mouse model treated with Lv-shLivin was significantly smaller compared to those of the PBS group (P<0.01). Taken together, our findings indicate that the expression of Livin is increased in human GC and correlates with tumor differentiation and lymph node metastases, while knockdown of Livin inhibits cell growth and invasion through blockade of the MAPK pathway in GC cells, suggesting that Livin may be a potential therapeutic target for the treatment of GC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.