Working memory is closely involved in various cognitive activities, but its neural mechanism is still under exploration. The mainstream view has long been that persistent activity is the neural basis of working memory, but recent experiments have observed that activity-silent memory can also be correctly recalled. The underlying mechanism of activity-silent memory is considered to be an alternative scheme that rejects the theory of persistent activity. We propose a working memory model based on spike-timing-dependent plasticity (STDP). Different from models based on spike-rate coding, our model adopts temporal patterns of action potentials to represent information, so it can flexibly encode new memory representation. The model can work in both persistent and silent states, i.e., it is compatible with both of these seemingly conflicting neural mechanisms. We conducted a simulation experiment, and the results are similar to the real experimental results, which suggests that our model is plausible in biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.