Comprehensive SummaryMaking full use of coordination‐driven self‐assembly strategy, we herein described the selective synthesis of a molecular Borromean rings and two cases of “U”‐shaped tweezer‐like molecular assemblies in high yield by using bipyridyl ligands based on biphenyl unit and half‐sandwich binuclear rhodium(III)/iridium(III) building blocks. The selective synthesis was realized by adjusting the length of dipyridyl arms. The utilization of curved U‐shaped bipyridyl ligand L1 led to tweezer‐like molecular assemblies. Subsequently, olefinic bonds were introduced to elongate dipyridyl arms obtaining ligand L2. The ligand L2 has two stable conformations, U‐shape and Z‐shape, which facilitated the formation of different topologies including the tetranuclear macrocycle and Borromean rings with different building blocks in this work. These structures in solid and solution all have been further confirmed by single‐crystal X‐ray diffraction, NMR analysis, and mass spectrometry. In addition, as an important driving force, π‐π stacking interactions not only played a significant role in the stability of structures but also further triggered photothermal conversion in solution. This research expands the application of topological structures in materials science and provides a new idea for the synthesis of novel photothermal conversion materials.This article is protected by copyright. All rights reserved.
We have successfully constructed a chiral linear [3]catenane stereoselectively by coordination-driven self-assembly using a ditopic monodentate ligand containing L-valine residues with a binuclear half-sandwich organometallic rhodium(III) unit. Furthermore, by increasing the steric hindrance of the amino acid residues in the ligand, a chiral [2]catenane was obtained, which can be regarded as the factor catenane of the chiral linear [3]catenane from a topological viewpoint. Notably, the resulting molecular catenanes all exhibit complex coconformational mechanical helical chirality and planar chirality ascribed to the point chirality of the ligands. Linear [3]catenanes and [2]catenanes with the opposite chirality can be obtained by using ligands containing the corresponding D-amino acid residues, which have been confirmed by single-crystal X-ray diffraction, NMR, mass spectrometry, and circular dichroism spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.