The generation of mode-locked rectangular pulses operating in dissipative soliton resonance (DSR) region is demonstrated in an erbium-doped figure-eight fiber laser with net anomalous dispersion. The duration of the wave-breaking-free rectangular pulse broadens with the increase of pump power. At a maximum pump power of 341 mW, the pulse energy can be up to 3.25 nJ with a repetition rate of 3.54 MHz. Particularly, the spectrum of rectangular pulse operating in DSR exhibits conventional soliton sidebands. The observed results show that the formation of pulse operating in DSR region is independent of mode-locking techniques, which may be helpful for further understanding the DSR phenomenon.
We reported on the generation of dual-wavelength rectangular pulses in a Yb-doped fiber laser (YDFL) by using a microfiber-based graphene saturable absorber (GSA). The duration of dual-wavelength rectangular pulse could be varied from 1.41 ns to 4.23 ns with the increasing pump power. With a tunable bandpass filter, it was found that the characteristics of the rectangular pulses centered at 1061.8 nm and 1068.8 nm are similar to each other. Moreover, the dual-wavelength switchable operation was also realized by properly rotating the polarization controllers (PCs). The demonstration of the dual-wavelength rectangular pulses from a YDFL would open some applications for fields such as spectroscopy, biomedicine and sensing research.
We reported on the dissipative soliton resonance (DSR) phenomenon in a mode-locked Yb-doped fiber laser by using the nonlinear polarization rotation technique. It was found that the multi-pulse oscillation under high pump power could be circumvented by properly adjusting the polarization controllers, namely, the wave-breaking-free rectangular pulse in DSR region was achieved. As the DSR signature, the pulse duration varied from 8.8 ps to 22.92 ns with the increasing pump power. Correspondingly, the maximum pulse energy was 3.24 nJ. The results demonstrated that the DSR phenomenon could exist in Yb-doped fiber lasers, which could be used to achieve wave-breaking-free, ultrahigh-energy pulse.
Two-dimensional (2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide (MoS 2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS 2 , we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS 2 onto the microfiber. With the proposed MoS 2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely, multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS 2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.
We report on the generation of a high-energy noiselike rectangular pulse in a mode-locked figure-eight fiber laser. The noiselike pulse appeared to have a rectangular shape on the oscilloscope. The pulse duration increased with increasing pump power, while the peak amplitude remained constant, which is very similar to the pulse evolution of dissipative soliton resonance. However, the pulse type is confirmed as a noiselike pulse using an autocorrelator. With the maximum pump power of 350 mW, the 135 nJ noiselike rectangular pulse with 76 ns duration was achieved. The results provide a new guideline for clarifying an alternative formation mechanism of the high-energy rectangular pulses in fiber lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.