The aim of the current study was to investigate the correlation between voltage-gated potassium 1.3 (Kv1.3) channel of peripheral blood T-lymphocytes and the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in hypertensive patients. Peripheral blood samples from the hypertensive Kazakh patients (n=30) and healthy Kazakh subjects (n=30) were collected. The T lymphocytes and serum were separated, and the state of Kv1.3 channels was detected using the patch-clamp technique. Reverse transcription-quantitative polymerase chain reaction and western blot analyses were used to detect the mRNA and protein expression levels of key molecules [NLRP3, caspase-1 and interleuking (IL)-β] in the lymphocyte NLRP3 inflammasome pathway, while serum IL-1β content was measured by ELISA assay. The results demonstrated no statistical difference in the subject baseline data between the two groups. While more significantly activated Kv1.3 channels were identified in the peripheral blood T-lymphocytes of the hypertension group compared to the normotension group, the mRNA and protein expression levels of NLRP3, caspase-1 and IL-1β were elevated and their peripheral serum interleukin-1β levels were significantly increased. After inhibiting the Kv1.3 channels using the classic potassium channel blocker, these indicators were all decreased significantly. The results indicate that the NLRP3 inflammasome pathway of peripheral blood T-lymphocytes in hypertensive Kazakh patients is activated, which may be correlated with the opening of the Kv1.3 channel.
A b s t r a c tBackground and aim: Increasing evidence indicates that chronic inflammation is a direct or indirect manifestation of hypertension. Potassium channels are thought to be critical for lymphocyte activation, which suggests that hypertension may be an inflammatory disease initiated at the ion channel level. Methods:This study investigated changes in interleukin (IL)-6, IL-17, and transforming growth factor beta (TGF-b1) expression in the blood of Kazakh hypertensive patients in Northwest China using ELISA technology. Whole-cell patch clamp technology was used to evaluate current changes associated with Kv1.3 and KCa3.1 in peripheral blood T lymphocytes of hypertensive patients, and to investigate current changes induced by telmisartan. We also investigated the effects of telmisartan on expression of Kv1.3 and KCa3.1 at mRNA and protein levels in peripheral blood T lymphocytes using real-time polymerase chain reaction and Western blot analysis. Results:Expression of IL-6, IL-17 and TGF-b1 in the blood of Kazakh hypertensive patients in Northwest China was significantly higher than in healthy controls (p < 0.05). The current mediated by Kv1.3 and KCa3.1 and the corresponding expression at mRNA and protein levels in T lymphocytes were also higher in these hypertensive patients than in controls (p < 0.05). Telmisartan intervention for 24 h and 48 h inhibited the current and expression of Kv1.3 and KCa3.1 at mRNA and protein levels (p < 0.05). Conclusions:These results indicated that the increase in functional Kv1.3 and KCa3.1 channels expressed in T lymphocytes of Kazakh patients with hypertension was blocked by telmisartan, resulting in a reduced inflammatory response. These results provide theoretical support for the treatment of hypertension at the cellular ion channel level.
Introduction:Activation of T lymphocytes, for which potassium channels are essential, is involved in the development of hypertension. In this study, we explored the inhibitory effects of telmisartan on the culture and proliferation of and Kv1.3 potassium channel expression in peripheral blood CD4+ T lymphocytes derived from Xinjiang Kazakh patients with hypertension.Methods:CD4+ T-cell samples from hypertensive Kazakh patients and healthy Kazakh people were divided into healthy control, case control, telmisartan, and 4-aminopytidine groups. Changes in the expression levels of interleukin (IL)-6 and IL-17 in the blood of the healthy control and case control subjects were detected by enzyme-linked immunosorbent assay. Peripheral blood CD4+ T lymphocytes were first activated and proliferated in vitro and then incubated for 0, 24, and 48 h under various treatment conditions. Thereafter, changes in CD4+ T-lymphocytic proliferation were determined using Cell Counting Kit-8 and microscope photography. Changes in messenger RNA (mRNA) and protein expression of the Kv1.3 potassium channel in CD4+ T lymphocytes were detected using real-time quantitative polymerase chain reaction and Western blots, respectively.Results:The IL-6 and IL-17 expression levels were significantly higher in the blood of the hypertensive Kazakh patients than in the healthy Kazakh people. Telmisartan inhibited T-lymphocytic proliferation, as well as the mRNA and protein expression of the Kv1.3 potassium channel in CD4+ T lymphocytes, and the inhibitory effects were time-dependent, with the strongest inhibition observed after 48 h and significantly weaker inhibition observed after 24 h of treatment.Conclusions:Telmisartan may potentially regulate hypertensive inflammatory responses by inhibiting T-lymphocytic proliferation and Kv1.3 potassium channel expression in CD4+ T lymphocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.