With the gradual increase of distributed energy penetration, the traditional optimization model of distribution network can no longer guarantee the stable and efficient operation of the distribution network. In order to deal with the inevitable uncertainty of distributed energy, a new robust optimal operation method is proposed for active distribution network (ADN) based on the minimum confidence interval of distributed energy Beta distribution in this paper. First, an ADN model is established with second-order cone to include the energy storage device, capacitor bank, static var compensator, on-load tap changer, wind turbine and photovoltaic. Then, the historical data of related distributed energy are analyzed and described by the probability density function, and the minimum confidence interval is obtained by interval searching. Furthermore, via taking this minimum confidence interval as the uncertain interval, a less conservative two-stage robust optimization model is established and solved for ADN. The simulation results for the IEEE 33-bus distribution network have verified that the proposed method can realize a more stable and efficient operation of the distribution network compared with the traditional robust optimization method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.