To improve the hole-transport ability and photoelectric properties of perovskite solar cells, the ground-state geometry, frontier molecular orbital, and mobility of two organic molecules were investigated using density functional theory (DFT) with the Marcus hopping model. The absorption spectra were calculated using time-dependent DFT. The result indicated that the increase in the conjugated chain and change in the substituted group location from meta to para cause low mobility, which has a negative effect on the hole-transporting ability.
The photovoltaic properties of two dyes (quercitin (Q) and rutin (R)) were experimentally investigated. The results showed that Q had excellent photoelectric properties with J s c of 5.480 mA·cm−2, V o c of 0.582 V, η of 2.151% larger than R with J s c of 1.826 mA·cm−2, V o c of 0.547 V, and η of 0.713%. For a better understanding of the photoelectric properties of two molecules and illustrating why the performances of Q is better than R from the micro-level, the UV-VIs spectrum, Fourier transforms infrared (FT-IR) spectrum, and cyclic voltage current characteristics were experimentally investigated. What is more, density functional theory (DFT) and time dependent density functional theory (TD-DFT) have been implemented in theoretical calculation. Based on the calculated results, frontier molecular orbitals (FMOs), charge differential density (CDD), infrared vibration, first hyperpolarizability, projected density orbital analysis (PDOS), electrostatic potential (ESP), and natural bond orbital (NBO) were analyzed. Hole/electron reorganization energies ( λ h / λ e ), light harvesting efficiency (LHE), fluorescent lifetime (τ), absorption peak, and the vertical dipole moment ( μ n o r m a l ) were calculated, and the shift of conduction band edge of a semiconductor (ΔECB) has been analyzed, which has a close relationship with J s c and V o c . The results demonstrated that, due to the higher LHE, τ, μ n o r m a l , and red-shifted absorption peak, Q has better photoelectric properties than R as a promising sensitizer.
The effect of a medium bandgap polymer doped into conventional binary heterojunction solar cells is investigated for ternary solar cells, which display different characteristics compared with traditional materials. First, the charge separation and recombination at the multi‐interface (double donors/single acceptor) and the charge transport between different phases are simulated to reveal the competition mechanism of electron transfer and insights into the merits and demerits of a hole transport layer with medium and narrow band gaps. Second, global modeling of performance for PCDTBT8‐doped PffBT4T‐2OD‐based ternary solar cells is established to evaluate the crucial parameters (open‐circuit voltage (V OC), short‐circuit current (J SC), fill factor (FF), and power conversion efficiency (PCE)) related to the experiment. The results demonstrate that the orbital energy levels, absorption peak, excited‐state, fluorescence lifetimes, and hole transportability are tunable upon the medium bandgap polymer doping process. The electron transfer process for the multi‐interface is enhanced by doping different bandgap polymers compared with a single interface, which contributes to the energy match and multistep jump mechanism. Ternary solar cells based on the doped polymer exhibit better V OC, FF, and PCE with weakened J SC. The theoretical calculations are in excellent agreement with experimental results. The global investigation of ternary solar cells can be used to interpret experiments and is viewed as an effective method for screening high‐performance solar cells.
As electron acceptors, non-fullerene molecules can overcome the shortcomings of fullerenes and their derivatives (such as high cost, poor co-solubility, and weak light absorption). The photoelectric properties of two potential non-fullerene polymer solar cells (PSCs) PBDB-T:IF-TN (PB:IF) and PBDB-T:IDT-TN (PB:IDT) are studied by density functional theory (DFT) and time-dependent DFT (TD-DFT). Based on the optimized structure of the ground state, the effects of the electron donor (D) and electron acceptor (A) (D/A) interfaces PBDB-T/IF-TN (PB/IF) and PBDB-T/IDT-TN (PB/IDT) are studied by a quantum-chemical method (QM) and Marcus theory. Firstly, for two non-fullerene acceptors (NFAs) IF-TN and IDT-TN, the NFA IDT-TN has better optical absorption ability and better electron transport ability than IF-TN. Secondly, for the D/A interfaces PB/IF and PB/IDT, they both have high optical absorption and electron transfer abilities, and PB/IDT has better optical absorption and lower exciton binding energy. Finally, some important parameters (open-circuit voltage, voltage loss, fill factor, and power conversion efficiency) are calculated and simulated by establishing the theoretical model. From the above analysis, the results show that the non-fullerene PSC PB:IDT has better photoelectric characteristics than PB:IF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.