Much has been done to search for highly efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER), which is critical to a range of electrochemical and photoelectrochemical processes. A new, high-temperature solution-phase method for the synthesis of ultrathin WS2 nanoflakes is now reported. The resulting product possesses monolayer thickness with dimensions in the nanometer range and abundant edges. These favorable structural features render the WS2 nanoflakes highly active and durable catalysts for the HER in acids. The catalyst exhibits a small HER overpotential of approximately 100 mV and a Tafel slope of 48 mV/decade. These ultrathin WS2 nanoflakes represent an attractive alternative to the precious platinum benchmark catalyst and rival MoS2 materials that have recently been heavily scrutinized for the electrocatalytic HER.
The development of non precious metal based electrocatalysts for the hydrogen evolution reaction (HER) holds a decisive key to a spectrum of energy conversion technologies. Previous studies have established layered molybdenum chalcogenides as promising candidates. In this work, we prepared ultrathin MoS2(1–x)Se2x alloy nanoflakes with monolayer or few-layer thickness and fully tunable chemical composition for maximum HER activity. Spectroscopic characterizations corroborate the progressive evolution of their structures and properties as x increases from 0 to 1 without any noticeable phase separation. In particular, it is evidenced that the introduction of selenium continuously modulates the d band electronic structure of molybdenum, probably leading to tuned hydrogen adsorption free energy and consequently electrocatalytic activity. Electrochemical measurements show that all MoS2(1–x)Se2x nanoflakes are highly active and durable for HER with small overpotentials in the range of 80–100 mV and negligible activity loss up to 10000 cycles. Most importantly, alloyed nanoflakes, especially with the chemical composition of MoSSe, exhibit improved performance in comparison to either MoS2 or MoSe2. Given their overall similar nanoflake morphologies, we believe such improvements reflect the higher intrinsic activity of alloyed catalysts with the hydrogen adsorption free energy closer to thermoneutral.
Formic acid (or formate) is suggested to be one of the most economically viable products from electrochemical carbon dioxide reduction. However, its commercial viability hinges on the development of highly active and selective electrocatalysts. Here we report that structural defects have a profound positive impact on the electrocatalytic performance of bismuth. Bismuth oxide double-walled nanotubes with fragmented surface are prepared as a template, and are cathodically converted to defective bismuth nanotubes. This converted electrocatalyst enables carbon dioxide reduction to formate with excellent activity, selectivity and stability. Most significantly, its current density reaches ~288 mA cm −2 at −0.61 V versus reversible hydrogen electrode within a flow cell reactor under ambient conditions. Using density functional theory calculations, the excellent activity and selectivity are rationalized as the outcome of abundant defective bismuth sites that stabilize the *OCHO intermediate. Furthermore, this electrocatalyst is coupled with silicon photocathodes and achieves high-performance photoelectrochemical carbon dioxide reduction.
The development of nonprecious metal based electrocatalysts for hydrogen evolution reaction (HER) has received increasing attention over recent years. Previous studies have established MoC as a promising candidate. Nevertheless, its preparation requires high reaction temperature, which more than often causes particle sintering and results in low surface areas. In this study, we show supporting MoC nanoparticles on the three-dimensional scaffold as a possible solution to this challenge and develop a facile two-step preparation method for ∼3 nm MoC nanoparticles uniformly dispersed on carbon microflowers (MoC/NCF) via the self-polymerization of dopamine. The resulting hybrid material possesses large surface areas and a fully open and accessible structure with hierarchical order at different levels. MoO was found to play an important role in inducing the formation of this morphology presumably via its strong chelating interaction with the catechol groups of dopamine. Our electrochemical evaluation demonstrates that MoC/NCF exhibits excellent HER electrocatalytic performance with low onset overpotentials, small Tafel slopes, and excellent cycling stability in both acidic and alkaline solutions.
Distributed Denial of Service (DDoS) attacks in cloud computing environments are growing due to the essential characteristics of cloud computing. With recent advances in software-defined networking (SDN), SDN-based cloud brings us new chances to defeat DDoS attacks in cloud computing environments. Nevertheless, there is a contradictory relationship between SDN and DDoS attacks. On one hand, the capabilities of SDN, including software-based traffic analysis, centralized control, global view of the network, dynamic updating of forwarding rules, make it easier to detect and react to DDoS attacks. On the other hand, the security of SDN itself remains to be addressed, and potential DDoS vulnerabilities exist across SDN platforms. In this paper, we discuss the new trends and characteristics of DDoS attacks in cloud computing, and provide a comprehensive survey of defense mechanisms against DDoS attacks using SDN. In addition, we review the studies about launching DDoS attacks on SDN, as well as the methods against DDoS attacks in SDN.To the best of our knowledge, the contradictory relationship between SDN and DDoS attacks has not been well addressed in previous works. This work can help to understand how to make full use of SDN's advantages to defeat DDoS attacks in cloud computing environments and how to prevent SDN itself from becoming a victim of DDoS attacks, which are important for the smooth evolution of SDN-based cloud without the distraction of DDoS attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.