Background: Pneumonia is a common acute lower respiratory infection in children and elders. Circular RNAs (circRNAs) have recently been uncovered to play important roles in pneumonia. However, the function and mechanism of circ_0038467 in pneumonia remain elusive. Methods: Cell viability and apoptosis were determined using the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The levels of interleukin 6 (IL-6), IL-8 and IL-1β were detected by enzyme-linked immunosorbent assay (ELISA). Western blot analysis was performed to assess the expression of related proteins. Circ_0038467 was characterized by Ribonuclease R (RNase) digestion and subcellular localization assays. The levels of circ_0038467 and miR-338-3p were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). The direct interaction between circ_0038467 and miR-338-3p was validated by the dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Results: Our data indicated that lipopolysaccharide (LPS) induced an inflammatory injury in 16HBE cells by repressing cell viability and enhancing cell apoptosis and proinflammatory cytokines production. Circ_0038467 was upregulated and miR-338-3p was downregulated in LPS-treated 16HBE cells. Circ_0038467 knockdown or miR-338-3p overexpression attenuated LPS-induced 16HBE cell inflammatory injury. Moreover, circ_0038467 acted as a sponge of miR-338-3p in 16HBE cells. MiR-338-3p mediated the alleviated effect of circ_0038467 knockdown on LPS-induced 16HBE cell inflammatory injury. Additionally, the Janus kinase/ signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway was involved in the circ_0038467/miR-338-3p axis-mediated regulation in LPS-induced 16HBE cell inflammatory injury. Conclusions: The current work had led to the identification of circ_0038467 knockdown that alleviated LPS-induced inflammatory injury in 16HBE cells at least partly through sponging miR-338-3p and regulating JAK/STAT3 pathway, highlighting novel molecular targets for the treatment of pneumonia.
Tuberculosis is one of the most important infectious diseases worldwide and macrophage apoptosis is the major host defense mechanism against TB. We attempted to characterize the role of miRNA (miR)-125b-5p on mycobacterium tuberculosis (Mtb) infection and macrophages behaviors in vitro. According to fluorescence-activated cell separation (FACS), primary monocytes (CD14 + ) in TB patients were accumulated, and apoptotic monocytes were decreased. Peripheral blood mononuclear cells (PBMCs)-derived macrophages (MDMs) and monocytic cells THP-1-derived macrophage-like cells (TDMs) in vitro were used to be infected with H37Rv. After infection, colony-forming units assay revealed the increase of bacterial activity, FACS demonstrated the decrease of apoptosis rate of MDMs and TDMs, as well as promoted levels of IL-6, TNF-α, Bax, and Bim and suppressed levels of IL-10 and Bcl-2, examined by enzyme-linked immunosorbent assay (ELISA) and western blot assay. Expression of miR-125b-5p and DNA damage-regulated autophagy modulator 2 (DRAM2) was examined, and realtime PCR and western blot assay showed that miR-125b-5p was upregulated, whereas DRAM2 was downregulated in primary monocytes and H37Rv-infected macrophages (MDMs and TDMs). Moreover, blocking miR-125b-5p could attenuated H37Rv-induced bacterial activity and inflammatory response of MDMs and TDMs, accompanied with apoptosis inhibition. Whereas these effects of miR-125b-5p knockdown were abolished by downregulating DRAM2. In mechanism, DRAM2 was a downstream target of miR-125b-5p, as evidenced by dual-luciferase reporter assay. Collectively, silencing miR-125b-5p could protect human macrophages against Mtb infection through promoting apoptosis and inhibiting inflammatory response via targeting DRAM2, suggesting a novel target for Mtb eliminating.
Although high-mobility group box-1 (HMGB1) levels in tracheal aspirates are associated with the pathological features of bronchopulmonary dysplasia (BPD), the role of HMGB1 in the terminal stage of abnormal alveologenesis has not yet been understood. In this study, we addressed the role of HMGB1 in the elastogenesis disruption in the lungs of newborn mice with BPD. We found that elevations of whole lung HMGB1 level were associated with impaired alveolar development and aberrant elastin production in 85% O2-exposed lungs. HMGB1 neutralizing antibody attenuated the structural disintegration developed in hyperoxia-damaged lungs. Furthermore, HMGB1 inhibition rescued the neutrophil influx in hyperoxia-injured lung and partially abolished the mRNA level of the proinflammatory mediators, interleukin (IL)-1β and transforming growth factor (TGF)-β1. These data suggested that pulmonary HMGB1 plays an important role in the disruption of elastogenesis in the terminal stage of lung development through reduced pulmonary inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.