Background. Pulmonary artery hypertension (PAH) is a rare, life-limiting cardiopulmonary disorder characterized by the progressive and remodeling of pulmonary vasculature. Although the development of the technology brings us many approaches for the treatment of PAH, the effect of treatment is unsatisfactory. Tripterygium wilfordii (TW), as a traditional Chinese medicine (TCM), has been widely used in anti-inflammation, anticancer, and other fields. However, the potential of TW in treating PAH is currently unclear. Methods. Active ingredients and their corresponding genes were harvested from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP), CTD, and STITCH. Meanwhile, genes associated with PAH were adopted from OMIM and GeneCards databases. Through Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses, potential targeting KEGG pathways and functions were further collected. Then, STRING was used to generate the protein-protein interaction (PPI) network. The “ingredients-targets-pathway” network was built by Cystoscope. Finally, the binding between active ingredients of TW and corresponding targets of PAH was identified via molecular docking technology and surface plasmon resonance (SPR) experiments. Results. The network pharmacology analysis revealed 36 active ingredients in TW and 150 potential targets related to the treatment of PAH with TW. Moreover, GO enrichment analysis showed that the key function in molecular function (MF) was related to enzyme binding, the key function in biological process (BP) was related to cellular response to organic substance, and the key function in cellular component (CC) was related to KEGG enrichment analysis and found that it was closely related to the IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, and apoptosis. At last, molecular docking results revealed that the main active ingredients of TW had a strong binding ability with the PAH target protein. In addition, the SPR experiment revealed that kaempferol was combined with the CASP3 protein rather than PARP1, while triptolide was combined with PARP1 rather than the CASP3 protein. Conclusion. TW may have therapeutic effects on PAH through multitargets and multimethods, which provide a scientific basis for further elaborating the mechanism of Tripterygium wilfordii in the treatment of PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.