Lectin-like, oxidized low-density lipoprotein (LDL) receptor 1, LOX-1, is the major receptor for oxidized LDL (OxLDL) in endothelial cells. We have determined the crystal structure of the ligand binding domain of LOX-1, with a short stalk region connecting the domain to the membrane-spanning region, as a homodimer linked by an interchain disulfide bond. In vivo assays with LOX-1 mutants revealed that the "basic spine," consisting of linearly aligned arginine residues spanning over the dimer surface, is responsible for ligand binding. Single amino acid substitution in the dimer interface caused a severe reduction in LOX-1 binding activity, suggesting that the correct dimer arrangement is crucial for binding to OxLDL. Based on the LDL model structure, possible binding modes of LOX-1 to OxLDL are proposed.
Postfermented Pu-erh tea (PE) protects against metabolic syndrome (MS), but little is known regarding its underlying mechanisms. Animal experiments were performed to determine whether the gut microbiota mediated the improvement in diet-induced MS by PE and its main active components (PEAC). We confirmed that PE altered the body composition and energy efficiency, attenuated metabolic endotoxemia and systemic and multiple-tissue inflammation, and improved the glucose and lipid metabolism disorder in high-fat diet (HFD)-fed mice via multiple pathways. Notably, PE promoted the lipid oxidation and browning of white adipose tissue (WAT) in HFD-fed mice. Polyphenols and caffeine (CAF) played critical roles in improving these parameters. Meanwhile, PE remodeled the disrupted intestinal homeostasis that was induced by the HFD. Many metabolic changes observed in the mice were significantly correlated with alterations in specific gut bacteria. and were speculated to be the key gut bacterial links between the PEAC treatment and MS at the genus and species levels. Interestingly, administration altered body composition and energy efficiency, promoted the browning of WAT, and improved the lipid and glucose metabolism disorder in the HFD-fed mice, whereas administration reduced the HFD-induced liver and intestinal inflammatory responses. In summary, polyphenol- and CAF-rich PE improved diet-induced MS, and this effect was associated with a remodeling of the gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.