In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loophelix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species. Mutations that affect the initial steps in reproductive AM formation often result in the formation of characteristic pin-like inflorescences. Several such mutants, first described in Arabidopsis, are predominantly affected in genes related to the hormone auxin, including PIN-FORMED1
The micronutrient boron is essential in maintaining the structure of plant cell walls and is critical for high yields in crop species. Boron can move into plants by diffusion or by active and facilitated transport mechanisms. We recently showed that mutations in the maize boron efflux transporter ROTTEN EAR (RTE) cause severe developmental defects and sterility. is part of a small gene family containing five additional members (-) that show tissue-specific expression. The close paralogous gene encodes a protein with 95% amino acid identity with RTE and is similarly expressed in shoot and root cells surrounding the vasculature. Despite sharing a similar function with, mutations in the gene do not cause growth defects in the shoot, even in boron-deficient conditions. However, mutants strongly enhance the phenotype in soils with low boron content, producing shorter plants that fail to form all reproductive structures. The joint action of RTE and RTE2 is also required in root development. These defects can be fully complemented by supplying boric acid, suggesting that diffusion or additional transport mechanisms overcome active boron transport deficiencies in the presence of an excess of boron. Overall, these results suggest that and function are essential for maize shoot and root growth in boron-deficient conditions.
Meristems are highly regulated structures ultimately responsible for the formation of branches, lateral organs, and stems, and thus directly affect plant architecture and crop yield. In meristems, genetic networks, hormones, and signaling molecules are tightly integrated to establish robust systems that can adapt growth to continuous inputs from the environment. Here we characterized needle1 (ndl1), a temperature-sensitive maize mutant that displays severe reproductive defects and strong genetic interactions with known mutants affected in the regulation of the plant hormone auxin. NDL1 encodes a mitochondria-localized ATP-dependent metalloprotease belonging to the FILAMENTATION TEMPERATURE-SENSITIVE H (FTSH) family. Together with the hyperaccumulation of reactive oxygen species (ROS), ndl1 inflorescences show up-regulation of a plethora of stress-response genes. We provide evidence that these conditions alter endogenous auxin levels and disrupt primordia initiation in meristems. These findings connect meristem redox status and auxin in the control of maize growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.