Background: Alzheimer's disease (AD) and Parkinson's disease (PD) are two major neurodegenerative diseases worldwide. Demographic aging is in rapid progress in China. Up-to-date estimates of AD and PD prevalence have not been provided.Methods: Studies that reported the prevalence of AD and PD in China were identified via a systematic database search from 1985 to 2018. Meta-analysis, local polynomial regression and autoregressive integrated moving average model were used for analyses.Results: A total of 99 studies were included in the study with populations of 385,312 and 227,228, respectively for AD and PD. The overall prevalence of AD and PD following age standardization was 3.20% [95% confidence interval (CI) = 3.17–3.23] and 1.06% (95% CI = 1.02–1.10), respectively in individuals over 60 years old. The rates increased drastically for every 10-years increment of age. The yearly prevalence of AD was predicted to increase from 3.81 to 6.17% in the next 5 years. Significant differences were observed between genders [male to female odds ratio (OR) for AD = 0.57, 95% CI = 0.51–0.64; OR for PD = 1.25, 95% CI = 1.06–1.46], and between education levels (Illiterate to non-illiterate OR for AD = 2.99, 95% CI = 2.38–3.75), but not between urban and rural settings.Conclusion: Our results provide an updated insight into the epidemiology of AD and PD in China and their associated rates and ratios. The findings may facilitate China policy makers and health professionals mitigate the related health issues.
Single-component emitters with stable and bright warm white-light emission are highly desirable for high-efficacy warm white light-emitting diodes (warm-WLEDs), however, materials with such luminescence properties are extremely rare. Lowdimensional lead (Pb) halide perovskites can achieve warm white photoluminescence (PL), yet they suffer from low stability and PL quantum yield (PLQY). While Pb-free air-stable perovskites such as Cs 2 AgInCl 6 emit desirable warm white light, sophisticated doping strategies are typically required to increase their PL intensity. Moreover, the use of rare metal-bearing compounds along with the typically required vacuum-based thin-film processing may greatly increase their production cost. Herein, organic-inorganic hybrid cuprous (Cu + )-based metal halide MA 2 CuCl 3 (MA = CH 3 NH 3 + ) that meets the requirements of i) nontoxicity, ii) high PLQY, and iii) dopant-free is presented. Both single crystals and thin films of MA 2 CuCl 3 can be facilely prepared by a low-cost solution method, which demonstrate bright warm white-light emission with intrinsically high PLQYs of 90-97%. Prototype electroluminescence devices and down-conversion LEDs are fabricated with MA 2 CuCl 3 thin films and single crystals, respectively, which show bright luminescence with decent efficiencies and operational stability. These findings suggest that MA 2 CuCl 3 has a great potential for the single-component indoor lighting and display applications.
BackgroundGlutathione S-transferase zeta 1 (GSTZ1) is the penultimate enzyme in phenylalanine/tyrosine catabolism. GSTZ1 is dysregulated in cancers; however, its role in tumorigenesis and progression of hepatocellular carcinoma (HCC) is largely unknown. We aimed to assess the role of GSTZ1 in HCC and to reveal the underlying mechanisms, which may contribute to finding a potential therapeutic strategy against HCC.MethodsWe first analyzed GSTZ1 expression levels in paired human HCC and adjacent normal tissue specimens and the prognostic effect of GSTZ1 on HCC patients. Thereafter, we evaluated the role of GSTZ1 in aerobic glycolysis in HCC cells on the basis of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Furthermore, we assessed the effect of GSTZ1 on HCC proliferation, glutathione (GSH) concentration, levels of reactive oxygen species (ROS), and nuclear factor erythroid 2-related factor 2 (NRF2) signaling via gain- and loss- of GSTZ1 function in vitro. Moreover, we investigated the effect of GSTZ1 on diethylnitrosamine (DEN) and carbon tetrachloride (CCl4) induced hepatocarcinogenesis in a mouse model of HCC.ResultsGSTZ1 was downregulated in HCC, thus indicating a poor prognosis. GSTZ1 deficiency significantly promoted hepatoma cell proliferation and aerobic glycolysis in HCC cells. Moreover, loss of GSTZ1 function depleted GSH, increased ROS levels, and enhanced lipid peroxidation, thus activating the NRF2-mediated antioxidant pathway. Furthermore, Gstz1 knockout in mice promoted DEN/CCl4-induced hepatocarcinogenesis via activation of the NRF2 signaling pathway. Furthermore, the antioxidant agent N-acetylcysteine and NRF2 inhibitor brusatol effectively suppressed the growth of Gstz1-knockout HepG2 cells and HCC progression in Gstz1−/− mice.ConclusionsGSTZ1 serves as a tumor suppressor in HCC. GSH depletion caused by GSTZ1 deficiency elevates oxidative stress, thus constitutively activating the NRF2 antioxidant response pathway and accelerating HCC progression. Targeting the NRF2 signaling pathway may be a promising therapeutic approach for this subset of HCC.
Photocatalytic detoxification of highly toxic agents is a promising approach to protect ecological environment and human health, and the key problem lies in the development of novel efficient photocatalysts. Herein,...
Low-dimensional lead (Pb)-free perovskite derivatives have recently been regarded as promising candidates for various optoelectronic applications because of their merits of easy preparation, nontoxicity, and broadband self-trapped exciton emission. However, similar to those Pb-based metal halide perovskites, most of these materials undergo an irreversible structural damage upon exposure to aqueous medium, which imposes restrictions on cyclic utilization in both academic and industrial fields. Herein, we report pure Mn-based metal halide, Cs3MnI5, which readily recovers from aqueous solution under mild heat stress and maintains excellent optical properties with high photoluminescence quantum yields of 73%. Meanwhile, this recyclable halide material demonstrates a sensitive X-ray response with a low detection limit of 0.4 μGy/s, high light yield of 33600 ph/MeV, and spatial resolution of 7.45 lp/mm, being suitable for X-ray imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.