Herein, a Lewis base catalyzed trifluoromethylsulfinylation of alkyl alcohols and phenols with N-(trifluoromethylsulfinyl)phthalimide which is a bench stable electrophilic trifluoromethylsulfinylating reagent is presented. As a result, modular synthesis of a...
Here, we demonstrate a readily prepared anthrazoline photocatalyst, which can effectively promote C-O bond formation reactions with the aid of Ni(II) complex. This methodology enables the esterification (36 examples) and etherification (8 examples) with a broad range of scope, allowing aryl and alkyl halides coupled with diverse carboxylic acids/alcohols. Our metal-free photocatalysts have a potential broad application, may serve as an alternative to some iridium and ruthenium based photocatalysts, and are of potential importance to the pharmaceutical industry.
In this report, phthalocyanine (Pc)/reduced graphene (rG)/bacterial cellulose (BC) ternary nanocomposite, Pc-rGBC, was developed through the immobilization of Pc onto a reduced graphene–bacterial cellulose (rGBC) nanohybrid after the reduction of biosynthesized graphene oxide-bacterial cellulose (GOBC) with N2H4. Field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FT-IR) were employed to monitor all of the functionalization processes. The Pc-rGBC nanocomposite was applied for the treatment of phenol wastewater. Thanks to the synergistic effect of BC and rG, Pc-rGBC had good adsorption capacity to phenol molecules, and the equilibrium adsorption data fitted well with the Freundlich model. When H2O2 was presented as an oxidant, phenol could rapidly be catalytically decomposed by the Pc-rGBC nanocomposite; the phenol degradation ratio was more than 90% within 90 min of catalytic oxidation, and the recycling experiment showed that the Pc-rGBC nanocomposite had excellent recycling performance in the consecutive treatment of phenol wastewater. The HPLC result showed that several organic acids, such as oxalic acid, maleic acid, fumaric acid, glutaric acid, and adipic acid, were formed during the reaction. The chemical oxygen demand (COD) result indicated that the formed organic acids could be further mineralized to CO2 and H2O, and the mineralization ratio was more than 80% when the catalytic reaction time was prolonged to 4 h. This work is of vital importance, in terms of both academic research and industrial practice, to the design of Pc-based functional materials and their application in environmental purification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.