Diabetic cardiomyopathy (DCM) was first recognized more than four decades ago and occurred independent of cardiovascular diseases or hypertension in both type 1 and type 2 diabetic patients. The exact mechanisms underlying this disease remain incompletely understood. Several pathophysiological bases responsible for DCM have been proposed, including the presence of hyperglycemia, nonenzymatic glycosylation of large molecules (e.g., proteins), energy metabolic disturbance, mitochondrial damage and dysfunction, impaired calcium handling, reactive oxygen species formation, inflammation, cardiac cell death, and cardiac hypertrophy and fibrosis, leading to impairment of cardiac contractile functions. Increasing evidence also indicates the phenomenon called "metabolic memory" for diabetes-induced cardiovascular complications, for which epigenetic modulation seemed to play an important role, suggesting that the aforementioned pathogenic bases may be regulated by epigenetic modification. Therefore, this review aims at briefly summarizing the current understanding of the pathophysiological bases for DCM. Although how epigenetic mechanisms play a role remains incompletely understood now, extensive clinical and experimental studies have implicated its importance in regulating the cardiac responses to diabetes, which are believed to shed insight into understanding of the pathophysiological and epigenetic mechanisms for the development of DCM and its possible prevention and/or therapy. © 2017 American Physiological Society. Compr Physiol 7:693-711, 2017.
Inhibition of total histone deacetylases (HDACs) was phenomenally associated with the prevention of diabetic cardiomyopathy (DCM). However, which specific HDAC plays the key role in DCM remains unclear. The present study was designed to determine whether DCM can be prevented by specific inhibition of HDAC3 and to elucidate the mechanisms by which inhibition of HDAC3 prevent DCM. Type 1 diabetes OVE26 and age-matched wild-type mice were given the selective HDAC3 inhibitor RGFP966 or vehicle for 3 months. These mice were then sacrificed immediately or 3 months later for cardiac function and pathological examination. HDAC3 activity was significantly increased in the heart of diabetic mice. Administration of RGFP966 significantly prevented DCM, as evidenced by improved diabetes-induced cardiac dysfunction, hypertrophy and fibrosis, along with diminished cardiac oxidative stress, inflammation, and insulin resistance, not only in the mice sacrificed immediately or 3 months later following the three-month treatment. Furthermore, phosphorylated extracellular signal-regulated kinases (ERK) 1/2, a well-known initiator of cardiac hypertrophy, was significantly increased, while dual specificity phosphatase 5 (DUSP5), an ERK1/2 nuclear phosphatase, was substantially decreased in diabetic hearts. Both of these changes were prevented by RGFP966. Chromatin immunoprecipitation assay showed that HDAC3 inhibition elevated histone H3 acetylation on the DUSP5 gene promoter at both two-time points. These findings suggest that diabetes-activated HDAC3 inhibits DUSP5 expression through deacetylating histone H3 on the primer region of DUSP5 gene, leading to the derepression of ERK1/2 and the initiation of DCM. This study indicates the potential application of HDAC3 inhibitor for the prevention of DCM.
Peripheral and integral membrane proteins can be located in several different subcellular compartments, and it is often necessary to determine the location of such proteins or to track their movement in living cells. Image-based colocalization of labeled membrane proteins and compartment markers is frequently used for this purpose, but this method is limited in terms of throughput and resolution. Here we show that bioluminescence resonance energy transfer (BRET) between membrane proteins of interest and compartment-targeted BRET partners can report subcellular location and movement of membrane proteins in live cells. The sensitivity of the method is sufficent to localize a few hundred protein copies per cell. The spatial resolution can be sufficient to determine membrane topology, and the temporal resolution is sufficient to track changes that occur in less than one second. BRET requires little user intervention, and is thus amenable to large-scale experimental designs with standard instruments.
Oxidative stress is considered to be the main cause for several chronic diseases including diabetes. Through hyperglycemia, hyperlipidemia, hypertension and possible iron dyshomeostasis, diabetes induces oxidative stress that causes damage to multiple organs, leading to various complications. Therefore, antioxidant therapy may be an interesting approach to prevent diabetes and diabetic complications. Metallothionein as a potent antioxidant was found to significantly protect heart and kidney against diabetes-induced pathophysiological changes. Zinc as an important trace element and a metallothionein inducer was found to have same protective function. Since diabetes would impair defensive system, including growth factor reduction, exogenous supplementation of fibroblast growth factor (FGF) significantly prevented diabetes-induced cardiac oxidative damage and wound healing impairment. These studies suggest that protective agents such as metallothionein, zinc and FGFs play an important role in preventing the development of diabetes and diabetic complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.